Estrogen receptor knock-out mice: Molecular and endocrine phenotypes

2000 ◽  
Vol 7 (2) ◽  
pp. 16-17 ◽  
Author(s):  
K Korach
2009 ◽  
Vol 201 (3) ◽  
pp. 397-406 ◽  
Author(s):  
Rusana Simonoska ◽  
Annika E Stenberg ◽  
Maoli Duan ◽  
Konstantin Yakimchuk ◽  
Anders Fridberger ◽  
...  

There are well known differences between males and females in hearing. In the present study, the role of estrogen receptor-β (ER-β; listed as ESR2 in the MGI Database) in hearing was investigated by comparing hearing and morphology of the inner ear in ER-β knock-out mice (ER-β−/−) with that of wild-type (WT) littermates. Hearing was analyzed with auditory brainstem response audiometry at 3 and 12 months. The ER-β−/− mice were deaf at 1 year of age, and the morphological analysis showed absence of hair cells and loss of the whole organ of Corti initiated in the basal turn of the cochlea. Furthermore, in ER-β−/−, but not in WT mice, the spiral ganglion was lacking many of its neurons. Immunostaining showed the presence of both ER-α (listed as ESR1 in the MGI Database) and ER-β in the nuclei of some neurons in the inner ear in WT mice, but no ER-β was found in the ER-β−/− mice as expected. ER-α staining was predominant in the nuclei of large neurons and ER-β in nuclei of small neurons and fibroblasts. These results reveal that both ERs are present in the inner ear at specific localizations suggesting subtype-specific functions. It is concluded that ER-β is important for the prevention of age-related hearing loss. These findings strengthen the hypothesis that estrogen has a direct effect on hearing functions.


2013 ◽  
Vol 46 (06) ◽  
Author(s):  
LK Kollmannsberger ◽  
NC Gassen ◽  
A Bultmann ◽  
J Hartmann ◽  
P Weber ◽  
...  

2007 ◽  
Vol 45 (05) ◽  
Author(s):  
A Schnur ◽  
P Hegyi ◽  
V Venglovecz ◽  
Z Rakonczay ◽  
I Ignáth ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2040-P
Author(s):  
COURTNEY J. SMITH ◽  
KYLE B. KENER ◽  
JEFFERY S. TESSEM

2019 ◽  
Author(s):  
German I. Todorov ◽  
Karthikeyan Mayilvahanan ◽  
David Ashurov ◽  
Catarina Cunha

Autism Spectrum Disorder (ASD) is a pervasive developmental disorder, that is raising at a concerning rate. However, underlying mechanisms are still to be discovered. Obsessions and compulsions are the most debilitating aspect of these disorders (OCD), and they are the treatment priority for patients. SAPAP3 knock out mice present a reliable mouse model for repetitive compulsive behavior and are mechanistically closely related to the ASD mouse model Shank3 on a molecular level and AMPA receptor net effect. The phenotype of SAPAP3 knock out mice is obsessive grooming that leads to self-inflicted lesions by 4 months of age. Recent studies have accumulated evidence, that epigenetic mechanisms are important effectors in psychiatric conditions such as ASD and OCD. Methylation is the most studied mechanism, that recently lead to drug developments for more precise cancer treatments. We injected SAPAP3 mice with an epigenetic demethylation drug RG108 during pregnancy and delayed the onset of the phenotype in the offspring by 4 months. This result gives us clues about possible mechanism involved in OCD and ASD. Additionally, it shows that modulation of methylation mechanisms during development might be explored as a preventative treatment in the cases of high inherited risk of certain mental health conditions.


Sign in / Sign up

Export Citation Format

Share Document