302 POSTER Processing of 1-nitroacridine-induced DNA-DNA cross-links by topoisomerase I is associated with enhanced cellular survival: a possible role of topoisomerase I in the removal of DNA cross-links

2006 ◽  
Vol 4 (12) ◽  
pp. 95
Author(s):  
K. Lemke ◽  
A.K. Larsen ◽  
A. Skladanowski
2020 ◽  
Vol 6 (46) ◽  
pp. eaba6290 ◽  
Author(s):  
Yilun Sun ◽  
Lisa M. Miller Jenkins ◽  
Yijun P. Su ◽  
Karin C. Nitiss ◽  
John L. Nitiss ◽  
...  

Topoisomerases form transient covalent DNA cleavage complexes to perform their reactions. Topoisomerase I cleavage complexes (TOP1ccs) are trapped by camptothecin and TOP2ccs by etoposide. Proteolysis of the trapped topoisomerase DNA-protein cross-links (TOP-DPCs) is a key step for some pathways to repair these lesions. We describe a pathway that features a prominent role of the small ubiquitin-like modifier (SUMO) modification for both TOP1- and TOP2-DPC repair. Both undergo rapid and sequential SUMO-2/3 and SUMO-1 modifications in human cells. The SUMO ligase PIAS4 is required for these modifications. RNF4, a SUMO-targeted ubiquitin ligase (STUbL), then ubiquitylates the TOP-DPCs for their subsequent degradation by the proteasome. This pathway is conserved in yeast with Siz1 and Slx5-Slx8, the orthologs of human PIAS4 and RNF4.


1969 ◽  
Vol 244 (21) ◽  
pp. 5785-5789
Author(s):  
W.S. Chou ◽  
J.E. Savage ◽  
B.L. O'Dell
Keyword(s):  

2004 ◽  
Vol 24 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Andreas Rothfuss ◽  
Markus Grompe

ABSTRACT The detailed mechanisms of DNA interstrand cross-link (ICL) repair and the involvement of the Fanconi anemia (FA)/BRCA pathway in this process are not known. Present models suggest that recognition and repair of ICL in human cells occur primarily during the S phase. Here we provide evidence for a refined model in which ICLs are recognized and are rapidly incised by ERCC1/XPF independent of DNA replication. However, the incised ICLs are then processed further and DNA double-strand breaks (DSB) form exclusively in the S phase. FA cells are fully proficient in the sensing and incision of ICL as well as in the subsequent formation of DSB, suggesting a role of the FA/BRCA pathway downstream in ICL repair. In fact, activation of FANCD2 occurs slowly after ICL treatment and correlates with the appearance of DSB in the S phase. In contrast, activation is rapid after ionizing radiation, indicating that the FA/BRCA pathway is specifically activated upon DSB formation. Furthermore, the formation of FANCD2 foci is restricted to a subpopulation of cells, which can be labeled by bromodeoxyuridine incorporation. We therefore conclude that the FA/BRCA pathway, while being dispensable for the early events in ICL repair, is activated in S-phase cells after DSB have formed.


2007 ◽  
Vol 35 (2) ◽  
pp. 396-400 ◽  
Author(s):  
A. Lentini ◽  
P. Mattioli ◽  
B. Provenzano ◽  
A. Abbruzzese ◽  
M. Caraglia ◽  
...  

Protein-bound γ-glutamylpolyamines have highlighted a new pathway in polyamine metabolism. Human foreskin keratinocytes offer a suitable model for this study. Indeed, they develop polymerized envelopes, as they differentiate, rich in ϵ-(γ-glutamyl)lysine and N1,N8-bis(γ-glutamyl)spermidine cross-links. We have found that the selective oxidation of N1-(γ-glutamyl)spermidine and N-(γ-glutamyl)spermine by FAD-dependent polyamine oxidase (PAO) may be one of the cellular mechanisms regulating the preferential formation of a sterically defined bis(γ-glutamyl)spermidine cross-link. The significance of this finding is unknown, but it suggests that the target of this PAO-modulation is to achieve the biochemical prerequisite for production of a normal epidermal stratum corneum.


2021 ◽  
Vol 220 (11) ◽  
Author(s):  
Katherine Labbé ◽  
Shona Mookerjee ◽  
Maxence Le Vasseur ◽  
Eddy Gibbs ◽  
Chad Lerner ◽  
...  

Mitochondrial function is integrated with cellular status through the regulation of opposing mitochondrial fusion and division events. Here we uncover a link between mitochondrial dynamics and lipid metabolism by examining the cellular role of mitochondrial carrier homologue 2 (MTCH2). MTCH2 is a modified outer mitochondrial membrane carrier protein implicated in intrinsic cell death and in the in vivo regulation of fatty acid metabolism. Our data indicate that MTCH2 is a selective effector of starvation-induced mitochondrial hyperfusion, a cytoprotective response to nutrient deprivation. We find that MTCH2 stimulates mitochondrial fusion in a manner dependent on the bioactive lipogenesis intermediate lysophosphatidic acid. We propose that MTCH2 monitors flux through the lipogenesis pathway and transmits this information to the mitochondrial fusion machinery to promote mitochondrial elongation, enhanced energy production, and cellular survival under homeostatic and starvation conditions. These findings will help resolve the roles of MTCH2 and mitochondria in tissue-specific lipid metabolism in animals.


Author(s):  
Jaulang Hwang ◽  
Ching-Long Hwong ◽  
Mei-Shya Chen ◽  
Ming-Shiu Hung ◽  
Chung-Ching Juan ◽  
...  

2019 ◽  
Vol 41 (8) ◽  
pp. 1134-1144 ◽  
Author(s):  
Ioanna Giopanou ◽  
Nikolaos I Kanellakis ◽  
Anastasios D Giannou ◽  
Ioannis Lilis ◽  
Antonia Marazioti ◽  
...  

Abstract Increased expression of osteopontin (secreted phosphoprotein 1, SPP1) is associated with aggressive human lung adenocarcinoma (LADC), but its function remains unknown. Our aim was to determine the role of SPP1 in smoking-induced LADC. We combined mouse models of tobacco carcinogen-induced LADC, of deficiency of endogenous Spp1 alleles, and of adoptive pulmonary macrophage reconstitution to map the expression of SPP1 and its receptors and determine its impact during carcinogenesis. Co-expression of Spp1 and mutant KrasG12C in benign cells was employed to investigate SPP1/KRAS interactions in oncogenesis. Finally, intratracheal adenovirus encoding Cre recombinase was delivered to LSL.KRASG12D mice lacking endogenous or overexpressing transgenic Spp1 alleles. SPP1 was overexpressed in experimental and human LADC and portended poor survival. In response to two different smoke carcinogens, Spp1-deficient mice developed fewer and smaller LADC with decreased cellular survival and angiogenesis. Both lung epithelial- and macrophage-secreted SPP1 drove tumor-associated inflammation, while epithelial SPP1 promoted early tumorigenesis by fostering the survival of KRAS-mutated cells. Finally, loss and overexpression of Spp1 was, respectively, protective and deleterious for mice harboring KRASG12D-driven LADC. Our data support that SPP1 is functionally involved in early stages of airway epithelial carcinogenesis driven by smoking and mutant KRAS and may present an important therapeutic target.


IUBMB Life ◽  
2020 ◽  
Vol 72 (5) ◽  
pp. 842-854 ◽  
Author(s):  
Christian E. H. Schmelzer ◽  
Tobias Hedtke ◽  
Andrea Heinz

Sign in / Sign up

Export Citation Format

Share Document