Ledge mechanism of primary α2/γ lamellae growing in the supersaturated α2 matrix for γ-TiAl-based (γα2) alloy

1998 ◽  
Vol 39 (3) ◽  
pp. 289-293 ◽  
Author(s):  
Gao-Wu Qin ◽  
Shiming Hao ◽  
Xudong Sun
Keyword(s):  
1991 ◽  
Vol 6 (11) ◽  
pp. 2264-2271 ◽  
Author(s):  
R. Ramesh ◽  
A. Inam ◽  
D.M. Hwang ◽  
T.S. Ravi ◽  
T. Sands ◽  
...  

We have examined the atomic structure of growth interfaces in thin films of Y–Ba–Cu–O grown on [001] perovskite or cubic substrates. At substrate heater temperatures in the range of 780–820 °C c-axis oriented growth is observed on these substrates. On SrTiO3, the first layer appears to be either a BaO or a CuO2 plane while on LaAlO3 the first layer appears to be a CuO chain layer. The mismatch on the a-b plane is accommodated by the formation of interface dislocations. Defects on the substrate surface propagate as defects in the film. These defects are primarily translational boundaries and in some cases second phases. At lower substrate heater temperatures, i.e., 650–700 °C, a, b-axis growth dominates. Defects and steps on the substrate surface are more detrimental in the growth of a, b-axis oriented films, since they tend to favor the nucleation of c-axis oriented domains. This is ascribed to the ledge mechanism of c-axis film growth, for which the surface steps are good nucleation sites.


1990 ◽  
Vol 213 ◽  
Author(s):  
S. R. Singh ◽  
J. M. Howe

ABSTRACTThe structure of γ/α interfaces in binary and Ta-containing TiAl alloys were analyzed by HRTEM and image simulations. Growth of α2 was found to be due to a ledge mechanism, consisting of Shockley partial dislocations on alternate (111)γ planes. The interface is atomically flat between the ledges and addition of Ta was found to transform arrays of growth ledges in the binary alloy into islands on the plate faces in the Ta-containing alloy. These islands of α2 on the γ/α2 interfaces were 4–7nm wide and increased in size with decreasing ageing temperature. The height of the ledges and islands were always a multiple of the c-parameter (0.46nm) of the α2 phase. The islands were bounded by 90°(edge) and 30° screw) Shockley partial dislocations. The 30° partial dislocation cores were localized whereas the 90° partial dislocation cores appeared to be highly delocalized due to presence of a high density of kinks, which in one case was found to be about 0.65nm−1.These results are interpreted in terms of the growth mechanisms and morphology of the α2 phase.


1991 ◽  
Vol 237 ◽  
Author(s):  
Masato Enomoto ◽  
George Spanos ◽  
Robert A. Masumura

ABSTRACTThe characteristics of ledge growth of precipitates are investigated by a previously developed finite-difference computer model. The plate lengthening simulation results which incorporate measured ledge heights and spacings are in reasonable agreement with the observed lengthening behavior of plates in Fe-C alloys. The simulation which takes into account the diffusion field interaction among multiple precipitates shows that a variety of precipitate morphologies actually observed can possibly be formed solely by the change in the extent of diffusion field overlap among ledges and/or neighboring precipitates. This overlap is in turn caused by changes in the solute supersaturation, distribution of ledge nucleation sites and ledge nucleation rates. A brief discussion is made of the relative growth kinetics of ledged and disordered interfaces.


2000 ◽  
Vol 15 (10) ◽  
pp. 2145-2150 ◽  
Author(s):  
J. X. Zhang ◽  
H. Q. Ye

The structure of γ–α2 interfaces in deformed Ti–48Al–2Cr alloy was analyzed by high-resolution transmission electron microscopy (HREM) and image simulations. Growth of γ–TiAl plate in α2–Ti3Al phase was found to be a result of a ledge mechanism consisting of Shockley partial dislocations on alternate (0001)α2 planes. The height of the ledges was always a multiple of two (0001)α2 planes. The γ → α2 phase transformation was also an interface-related process. Large ledges of six close packed planes (111)γ high were often observed at the γ–α2 interface. Every large ledge consisted of six Shockley partial dislocations that originated from the γ–a2 interfacial lattice misfit. The movement of these partial dislocations accomplished the transformation of γ → α2 phase. Comparing the experimental and simulated HREM image, it was found that atomic reordering appears during the deformation-induced γ↔α2 transformation.


1993 ◽  
Vol 29 (3) ◽  
pp. 401-406 ◽  
Author(s):  
M.J. Whiting ◽  
P. Tsakiropoulos
Keyword(s):  

2011 ◽  
Vol 172-174 ◽  
pp. 432-436 ◽  
Author(s):  
Chihiro Watanabe ◽  
Ryoichi Monzen

The precipitation process in an aged Cu-1.9wt%Ni-0.3wt%Be alloy has been examined by high-resolution transmission electron microscopy. The precipitation sequence found is: Guinier- Preston (G.P.) zones → γ'' → γ' → stable γ. The disk-shaped G.P. zones and the disk-shaped γ'', γ' and γ precipitated phases are composed of monolayers of Be atoms on {100}αof the Cu matrix and alternative Be and Ni matrix layers parallel to {100}α. The γ'' phases consisting of two to eight Be-layers has a body-centered tetragonal (bct) lattice witha=b=0.24 nm andc=0.28 nm. The γ' or γ phase is bct witha=b=0.24 nm andc=0.26 nm ora=b=0.26 nm andc=0.27 nm. The γ'', γ' or γ phase aligns with the matrix according to the Bain orientation relationship. The growth kinetics of disk-shaped γ precipitates on aging at 500°C has been also investigated. The {001}αhabit planes of the γ precipitates migrate by a ledge mechanism. The average thickness of the γ disks increases with aging timetast1/2. An analysis of experimental data using a kinetic model yields the diffusivity of solute in the Cu matrix, which is in agreement with the reported diffusivity of Ni in Cu.


Sign in / Sign up

Export Citation Format

Share Document