Oxidation of the carbon protective coating in SCS-6 fibre reinforced titanium alloys

2002 ◽  
Vol 33 (10) ◽  
pp. 1373-1379 ◽  
Author(s):  
P.W.M Peters ◽  
J Hemptenmacher
2004 ◽  
Vol 85 (11) ◽  
pp. 2867-2869 ◽  
Author(s):  
Lianjun Wang ◽  
Changgong Meng ◽  
Changhou Liu ◽  
Liqiu Wang

Author(s):  
N. E. Paton ◽  
D. de Fontaine ◽  
J. C. Williams

The electron microscope has been used to study the diffusionless β → β + ω transformation occurring in certain titanium alloys at low temperatures. Evidence for such a transformation was obtained by Cometto et al by means of x-ray diffraction and resistivity measurements on a Ti-Nb alloy. The present work shows that this type of transformation can occur in several Ti alloys of suitable composition, and some of the details of the transformation are elucidated by means of direct observation in the electron microscope.Thin foils were examined in a Philips EM-300 electron microscope equipped with a uniaxial tilt, liquid nitrogen cooled, cold stage and a high resolution dark field device. Selected area electron diffraction was used to identify the phases present and the ω-phase was imaged in dark field by using a (101)ω reflection. Alloys were water quenched from 950°C, thinned, and mounted between copper grids to minimize temperature gradients in the foil.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Author(s):  
G. Das ◽  
R. E. Omlor

Fiber reinforced titanium alloys hold immense potential for applications in the aerospace industry. However, chemical reaction between the fibers and the titanium alloys at fabrication temperatures leads to the formation of brittle reaction products which limits their development. In the present study, coated SiC fibers have been used to evaluate the effects of surface coating on the reaction zone in the SiC/IMI829 system.IMI829 (Ti-5.5A1-3.5Sn-3.0Zr-0.3Mo-1Nb-0.3Si), a near alpha alloy, in the form of PREP powder (-35 mesh), was used a茸 the matrix. CVD grown AVCO SCS-6 SiC fibers were used as discontinuous reinforcements. These fibers of 142μm diameter contained an overlayer with high Si/C ratio on top of an amorphous carbon layer, the thickness of the coating being ∽ 1μm. SCS-6 fibers, broken into ∽ 2mm lengths, were mixed with IMI829 powder (representing < 0.1vol%) and the mixture was consolidated by HIP'ing at 871°C/0. 28GPa/4h.


Author(s):  
E. Sukedai ◽  
M. Shimoda ◽  
A. Fujita ◽  
H. Nishizawa ◽  
H. Hashimoto

ω-phase particles formed in β-titanium alloys (bcc structure) act important roles to their mechanical properties such as ductility and hardness. About the ductility, fine ω-phase particles in β–titanium alloys improve the ductility, because ω-phase crystals becomes nucleation sites of α-phase and it is well known that (β+α) duplex alloys have higher ductility. In the present study, the formation sites and the formation mechanism of ω-phase crystals due to external stress and aging are investigated using the conventional and high resolution electron microscopy.A β-titanium alloy (Til5Mo5Zr) was supplied by Kobe Steel Co., and a single crystal was prepared by a zone refining method. Plates with {110} surface were cut from the crystal and were pressured hydrostatically, and stressed by rolling and tensile testing. Specimens for aging with tensile stress were also prepared from Ti20Mo polycrystals. TEM specimens from these specimens were prepared by a twin-jet electron-polishing machine. A JEM 4000EX electron microscope operated at 400k V was used for taking dark field and HREM images.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


2018 ◽  
Vol 12 (9) ◽  
pp. 771
Author(s):  
Yuliia Borisovna Egorova ◽  
Liudmila Vasilevna Davydenko ◽  
Evgeniy Nikolaevich Egorov ◽  
Evgeniy Valeryevna Chibisova

2020 ◽  
Vol 56 (1) ◽  
pp. 57-69
Author(s):  
S. P. Rogalskiy ◽  
I. A. Morozovskaya ◽  
M. A. Boretskaya ◽  
T. V. Cherniavskaya ◽  
O. P. Tarasiuk ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document