Polymorphism revealed by simple sequence repeats

1996 ◽  
Vol 1 (7) ◽  
pp. 215-222 ◽  
Author(s):  
W POWELL ◽  
G MACHRAY ◽  
J PROVAN
3 Biotech ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rezwanuzzaman Laskar ◽  
Md Gulam Jilani ◽  
Safdar Ali

1994 ◽  
Vol 3 (2) ◽  
pp. 253-256 ◽  
Author(s):  
Rosann A. Farber ◽  
Thomas D. Petes ◽  
Margaret Dominska ◽  
Sarah S. Hudgens ◽  
R.Michael Liskay

2018 ◽  
Vol 19 (10) ◽  
pp. 3140 ◽  
Author(s):  
Chenggang Xiang ◽  
Ying Duan ◽  
Hongbo Li ◽  
Wei Ma ◽  
Sanwen Huang ◽  
...  

As one of the earliest domesticated species, Cucurbita pepo (including squash and pumpkin) is rich in phenotypic polymorphism and has huge economic value. In this research, using 1660 expressed sequence tags-simple sequence repeats (EST-SSRs) and 632 genomic simple sequence repeats (gSSRs), we constructed the highest-density EST-SSR-based genetic map in Cucurbita genus, which spanned 2199.1 cM in total and harbored 623 loci distributed in 20 linkage groups. Using this map as a bridge, the two previous gSSR maps were integrated by common gSSRs and the corresponding relationships around chromosomes in three sets of genomes were also collated. Meanwhile, one large segmental inversion that existed between our map and the C. pepo genome was detected. Furthermore, three Quantitative Trait Loci (QTLs) of the dwarf trait (gibberellin-sensitive dwarf type) in C. pepo were located, and the candidate region that covered the major QTL spanned 1.39 Mb, which harbored a predicted gibberellin 2-β-oxidase gene. Considering the rich phenotypic polymorphism, the important economic value in the Cucurbita genus species and several advantages of the SSR marker were identified; thus, this high-density EST-SSR-based genetic map will be useful in Pumpkin and Squash breeding work in the future.


2015 ◽  
Vol 65 (Pt_8) ◽  
pp. 2748-2760 ◽  
Author(s):  
Wei Wei ◽  
Robert E. Davis ◽  
Xiaobing Suo ◽  
Yan Zhao

Phytoplasmas are unculturable, cell-wall-less bacteria that parasitize plants and insects. This transkingdom life cycle requires rapid responses to vastly different environments, including transitions from plant phloem sieve elements to various insect tissues and alternations among diverse plant hosts. Features that enable such flexibility in other microbes include simple sequence repeats (SSRs) — mutation-prone, phase-variable short DNA tracts that function as ‘evolutionary rheostats’ and enhance rapid adaptations. To gain insights into the occurrence, distribution and potentially functional roles of SSRs in phytoplasmas, we performed computational analysis on the genomes of five completely sequenced phytoplasma strains, ‘Candidatus Phytoplasma asteris’-related strains OYM and AYWB, ‘Candidatus Phytoplasma australiense’-related strains CBWB and SLY and ‘Candidatus Phytoplasma mali’-related strain AP-AT. The overall density of SSRs in phytoplasma genomes was higher than in representative strains of other prokaryotes. While mono- and trinucleotide SSRs were significantly overrepresented in the phytoplasma genomes, dinucleotide SSRs and other higher-order SSRs were underrepresented. The occurrence and distribution of long SSRs in the prophage islands and phytoplasma-unique genetic loci indicated that SSRs played a role in compounding the complexity of sequence mosaics in individual genomes and in increasing allelic diversity among genomes. Findings from computational analyses were further complemented by an examination of SSRs in varied additional phytoplasma strains, with a focus on potential contingency genes. Some SSRs were located in regions that could profoundly alter the regulation of transcription and translation of affected genes and/or the composition of protein products.


2011 ◽  
Vol 30 (4) ◽  
pp. 827-837 ◽  
Author(s):  
Sarah M. Potts ◽  
Yuepeng Han ◽  
M. Awais Khan ◽  
Mosbah M. Kushad ◽  
A. Lane Rayburn ◽  
...  

2002 ◽  
Vol 104 (2) ◽  
pp. 301-307 ◽  
Author(s):  
F. Carriero ◽  
G. Fontanazza ◽  
F. Cellini ◽  
G. Giorio

Sign in / Sign up

Export Citation Format

Share Document