Dosage effect of minor arginyl- and isoleucyl-tRNAs on protein synthesis in an Escherichia coli in vitro coupled transcription/translation system

2001 ◽  
Vol 91 (1) ◽  
pp. 53-57 ◽  
Author(s):  
Xiuping Jiang ◽  
Hideo Nakano ◽  
Takanori Kigawa ◽  
Takashi Yabuki ◽  
Shigeyuki Yokoyama ◽  
...  
2006 ◽  
Vol 188 (11) ◽  
pp. 3826-3836 ◽  
Author(s):  
Shaleen B. Korch ◽  
Thomas M. Hill

ABSTRACT Persistence is an epigenetic trait that allows a small fraction of bacteria, approximately one in a million, to survive prolonged exposure to antibiotics. In Escherichia coli an increased frequency of persisters, called “high persistence,” is conferred by mutations in the hipA gene, which encodes the toxin entity of the toxin-antitoxin module hipBA. The high-persistence allele hipA7 was originally identified because of its ability to confer high persistence, but little is known about the physiological role of the wild-type hipA gene. We report here that the expression of wild-type hipA in excess of hipB inhibits protein, RNA, and DNA synthesis in vivo. However, unlike the RelE and MazF toxins, HipA had no effect on protein synthesis in an in vitro translation system. Moreover, the expression of wild-type hipA conferred a transient dormant state (persistence) to a sizable fraction of cells, whereas the rest of the cells remained in a prolonged dormant state that, under appropriate conditions, could be fully reversed by expression of the cognate antitoxin gene hipB. In contrast, expression of the mutant hipA7 gene in excess of hipB did not markedly inhibit protein synthesis as did wild-type hipA and yet still conferred persistence to ca. 10% of cells. We propose that wild-type HipA, upon release from HipB, is able to inhibit macromolecular synthesis and induces a bacteriostatic state that can be reversed by expression of the hipB gene. However, the ability of the wild-type hipA gene to generate a high frequency of persisters, equal to that conferred by the hipA7 allele, may be distinct from the ability to block macromolecular synthesis.


1999 ◽  
Vol 65 (8) ◽  
pp. 3279-3286 ◽  
Author(s):  
Qiaoping Yuan ◽  
James J. Pestka ◽  
Brandon M. Hespenheide ◽  
Leslie A. Kuhn ◽  
John E. Linz ◽  
...  

ABSTRACT Monoclonal antibody 6F5 (mAb 6F5), which recognizes the mycotoxin deoxynivalenol (DON) (vomitoxin), was used to select for peptides that mimic the mycotoxin by employing a library of filamentous phages that have random 7-mer peptides on their surfaces. Two phage clones selected from the random peptide phage-displayed library coded for the amino acid sequences SWGPFPF and SWGPLPF. These clones were designated DONPEP.2 and DONPEP.12, respectively. The results of a competitive enzyme-linked immunosorbent assay (ELISA) suggested that the two phage displayed peptides bound to mAb 6F5 specifically at the DON binding site. The amino acid sequence of DONPEP.2 plus a structurally flexible linker at the C terminus (SWGPFPFGGGSC) was synthesized and tested to determine its ability to bind to mAb 6F5. This synthetic peptide (designated peptide C430) and DON competed with each other for mAb 6F5 binding. When translationally fused with bacterial alkaline phosphatase, DONPEP.2 bound specifically to mAb 6F5, while the fusion protein retained alkaline phosphatase activity. The potential of using DONPEP.2 as an immunochemical reagent in a DON immunoassay was evaluated with a DON-spiked wheat extract. When peptide C430 was conjugated to bovine serum albumin, it elicited antibody specific to peptide C430 but not to DON in both mice and rabbits. In an in vitro translation system containing rabbit reticulocyte lysate, synthetic peptide C430 did not inhibit protein synthesis but did show antagonism toward DON-induced protein synthesis inhibition. These data suggest that the peptides selected in this study bind to mAb 6F5 and that peptide C430 binds to ribosomes at the same sites as DON.


2006 ◽  
Vol 34 (19) ◽  
pp. e135-e135 ◽  
Author(s):  
Madina B. Iskakova ◽  
Witold Szaflarski ◽  
Marc Dreyfus ◽  
Jaanus Remme ◽  
Knud H. Nierhaus

1985 ◽  
Vol 5 (1) ◽  
pp. 13-19
Author(s):  
Josette Noël ◽  
Léa Brakier-Gingras

The protein synthesis activity of heart, skeletal muscle and liver polysomes from isoprotenerol-treated and control hamsters has been compared in an in vitro non-inititating translation system. Heart and skeletal muscle polysomes from treated hamsters were less active than controls and required a higher magnesium concentration for optimal protein synthesis. These results suggest that there is a conformational modification in heart and skeletal muscle ribosomes from isoprotenerol-treated hamsters. No such change was observed with ribosomes from the liver of isoproterenol-treated hamsters.


2021 ◽  
Vol 118 (2) ◽  
pp. e2020599118
Author(s):  
Martin Y. Ng ◽  
Hong Li ◽  
Mikel D. Ghelfi ◽  
Yale E. Goldman ◽  
Barry S. Cooperman

During protein synthesis, nonsense mutations, resulting in premature stop codons (PSCs), produce truncated, inactive protein products. Such defective gene products give rise to many diseases, including cystic fibrosis, Duchenne muscular dystrophy (DMD), and some cancers. Small molecule nonsense suppressors, known as TRIDs (translational read-through–inducing drugs), stimulate stop codon read-through. The best characterized TRIDs are ataluren, which has been approved by the European Medicines Agency for the treatment of DMD, and G418, a structurally dissimilar aminoglycoside. Previously [1], we applied a highly purified in vitro eukaryotic translation system to demonstrate that both aminoglycosides like G418 and more hydrophobic molecules like ataluren stimulate read-through by direct interaction with the cell’s protein synthesis machinery. Our results suggested that they might do so by different mechanisms. Here, we pursue this suggestion through a more-detailed investigation of ataluren and G418 effects on read-through. We find that ataluren stimulation of read-through derives exclusively from its ability to inhibit release factor activity. In contrast, G418 increases functional near-cognate tRNA mispairing with a PSC, resulting from binding to its tight site on the ribosome, with little if any effect on release factor activity. The low toxicity of ataluren suggests that development of new TRIDs exclusively directed toward inhibiting termination should be a priority in combatting PSC diseases. Our results also provide rate measurements of some of the elementary steps during the eukaryotic translation elongation cycle, allowing us to determine how these rates are modified when cognate tRNA is replaced by near-cognate tRNA ± TRIDs.


Sign in / Sign up

Export Citation Format

Share Document