scholarly journals Fertilization of mouse oocytes using somatic cells as male germ cells

2001 ◽  
Vol 3 (3) ◽  
pp. 205-211 ◽  
Author(s):  
Orly Lacham-Kaplan ◽  
Rob Daniels ◽  
Alan Trounson
Development ◽  
1982 ◽  
Vol 70 (1) ◽  
pp. 29-36
Author(s):  
V. Gremigni ◽  
M. Nigro ◽  
I. Puccinelli

The source and fate of blastema cells are important and still unresolved problems in planarian regeneration. In the present investigation we have attempted to obtain new evidence of cell dedifferentiation-redifferentiation by using a polyploid biotype of Dugesia lugubris s.1. This biotype is provided with a natural karyological marker which allows the discrimination of triploid embryonic and somatic cells from diploid male germ cells and from hexaploid female germ cells. Thanks to this cell mosaic we previously demonstrated that male germ cells take part in blastema formation and are then capable of redifferentiating into somatic cells. In the present investigation sexually mature specimens were transected behind the ovaries and the posterior stumps containing testes were allowed to regenerate the anterior portion of the body. Along with the usual hexaploid oocytes, a small percentage (3.2%) of tetraploid oocytes were produced from regenerated specimens provided with new ovaries. By contrast only hexaploid oocytes were produced from control untransected specimens. The tetraploid oocytes are interpreted as original diploid male germ cells which following the transection take part in blastema formation and then during regeneration redifferentiate into female germ cells thus doubling their chromosome number as usual for undifferentiated cells entering the female gonad in this biotype.


Development ◽  
1980 ◽  
Vol 55 (1) ◽  
pp. 65-76
Author(s):  
V. Gremigni ◽  
C. Miceli ◽  
E. Picano

Previous findings by our group have shown how primordial male germ cells take part in regenerative blastema formation in planarians by migrating to the wound. The role of these cells in rebuilding transected tissues has been investigated in a population of Dugesia lugubris s.l. which is particularly suited for our purpose. In fact, these planarians provide a clear karyological marker to distinguish diploid male germ cells (2n = 8) from tryploid embryonic or somatic cells (3n = 12). In this study we employed the cytophotometric analysis of the nuclear Feulgen-DNA content in order to distinguish non-replicating male germ cells from reserve and somatic cells. The Feulgen-DNA content in cells from the gonad-free caudal area was measured after complete regeneration. Most non-replicating cells (94–95%) were found to have a DNA amount typical of cells previously estimated as triploid. Some (5–6%) nuclei containing a DNA amount typical of cells previously estimated as diploid male gonia were also found. These findings seem to support the view that primordial male germ cells also participate in rebuilding somatic tissues according to the field influence they encounter during regeneration. The possibility that metaplasia (or cell transdifferentiation) may occur in planarians is finally discussed.


2021 ◽  
Vol 22 (22) ◽  
pp. 12607
Author(s):  
Xi Wu ◽  
Yang Yang ◽  
Chaoyue Zhong ◽  
Tong Wang ◽  
Yanhong Deng ◽  
...  

Spermatogenesis is a process of self-renewal and differentiation in spermatogonial stem cells. During this process, germ cells and somatic cells interact intricately to ensure long-term fertility and accurate genome propagation. Spermatogenesis has been intensely investigated in mammals but remains poorly understood with regard to teleosts. Here, we performed single-cell RNA sequencing of ~9500 testicular cells from the male, orange-spotted grouper. In the adult testis, we divided the cells into nine clusters and defined ten cell types, as compared with human testis data, including cell populations with characteristics of male germ cells and somatic cells, each of which expressed specific marker genes. We also identified and profiled the expression patterns of four marker genes (calr, eef1a, s100a1, vasa) in both the ovary and adult testis. Our data provide a blueprint of male germ cells and supporting somatic cells. Moreover, the cell markers are candidates that could be used for further cell identification.


2005 ◽  
Vol 17 (2) ◽  
pp. 312
Author(s):  
N. Ogonuki ◽  
K. Inoue ◽  
H. Miki ◽  
Y. Hirose ◽  
H. Okada ◽  
...  

Microinsemination is a technique that delivers male germ cells directly into the ooplasm. The efficiency of fertilization and subsequent embryo development after microinsemination varies with species and the male germ cells used. This study examined the developmental ability of rabbit embryos in vitro and in vivo following microinsemination using haploid male germ cells at different stages. First, we injected rabbit spermatozoa, elongated spermatids, and round spermatids into mouse oocytes to assess their oocyte-activating capacity. Mouse oocytes are a good experimental model for assessing the oocyte-activating capacity of male germ cells from different species. The majority of mouse oocytes were activated irrespective of the stage of rabbit male germ cells injected (77, 61, and 73% for spermatozoa, elongated spermatids, and round spermatids, respectively). By contrast, these male germ cells activated homologous rabbit oocytes at rates of 100, 59, and 29%, respectively. After 120 h in culture, 69, 55, and 13% of these activated rabbit oocytes (pronuclear eggs) developed into blastocysts, respectively. The rate of embryo development into blastocysts following round spermatid injection was significantly improved when oocytes were activated by an electric pulse shortly before microinsemination. The total number of cells was counted in embryos that reached the morula/blastocyst stages in culture using nuclear-staining with propidium iodide. The average cell number of embryos derived from elongated (89 ± 41; mean ± SD) or round spermatid (98 ± 34) injection was significantly lower than that of control embryos (in vivo fertilization) (211 ± 44) (P < 0.01). After 24 h in culture, some four- to eight-cell-stage embryos were transferred into the oviducts of pseudopregnant females. Normal pups were born from embryos involving sperm (4 offspring/16 transfers; 25%) and elongated spermatid (3/26; 12%) injection, but none from those involving round spermatid injection (0/68). These findings indicate that rabbit male germ cells acquire the ability to activate oocytes and to support subsequent embryo development as they undergo spermiogenesis. Immaturity of the nuclear genome or difficulty in coordinating the behavior of the male and female chromosomes might compromise embryo development.


iScience ◽  
2021 ◽  
pp. 102890
Author(s):  
Ryuki Shimada ◽  
Hiroko Koike ◽  
Takamasa Hirano ◽  
Yuzuru Kato ◽  
Yumiko Saga

1956 ◽  
Vol 2 (4) ◽  
pp. 123-128 ◽  
Author(s):  
H. W. Beams ◽  
T. N. Tahmisian ◽  
R. L. Devine ◽  
Everett Anderson

The dictyosome (Golgi body) in the secondary spermatocyte of the cricket appears in electron micrographs as a duplex structure composed of (a) a group of parallel double-membraned lamellae and (b) a group of associated vacuoles arranged along the compact lamellae in a chain-like fashion. This arrangement of ultramicroscopic structure for the dictyosomes is strikingly comparable to that described for the Golgi apparatus of vertebrates. Accordingly, the two are considered homologous structures. Associated with the duplex structure of the dictyosomes is a differentiated region composed of small vacuoles. This is thought to represent the pro-acrosome region described in light microscope preparations. In the spermatid the dictyosomes fuse, giving rise to the acroblast. Like the dictyosomes, the acroblasts are made up of double-membraned lamellae and associated vacuoles. In addition, a differentiated acrosome region is present which, in some preparations, may display the acrosome vacuole and granule. Both the dictyosomes and acroblasts are distinct from mitochondria.


Sign in / Sign up

Export Citation Format

Share Document