scholarly journals A Direct Adaptive Generalized Predictive Control Structure - Application to a Flexible Structure

1998 ◽  
Vol 31 (22) ◽  
pp. 315-320
Author(s):  
G. Ramond ◽  
D. Dumur ◽  
P. Boucher
2019 ◽  
Vol 5 (5) ◽  
pp. 0408-0414
Author(s):  
S. B. ROVEA ◽  
RODOLFO FLESCH

This paper proposes a fast predictive control structure with online model update according to process parametric variations. The proposed controller is based on the Generalized Predictive Control (GPC) algorithm, but it integrates the recursive least squares identification method with a variable forgetting factor to estimate at each iteration the parameters of a linear structure model used for multi-step ahead prediction. For a system with constraints on the process variables, the resulting optimization problem of GPC is solved using quadratic programming based on the Alternate Direction Method of Multipliers, which allows the control signal to be obtained with small computational effort. In order to validate the proposed algorithm an experimental case study that considers the speed control of a direct current motor and the proposed controller embedded in a microcontroller STM32F303K8T6 is presented. Experimental results use as baseline the GPC with fixed model parameters and show that the proposed fast adaptive predictive control structure is able to keep almost the same transient response for all the considered operating points of the motor, while GPC presents high oscillations at operating conditions far from the one used to obtain the nominal model. Even though the proposed controller needs to solve two optimization problems at each sampling instant, it can run about 60 times in a second in the microcontroller used in this study


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 207
Author(s):  
Jianwen Cao ◽  
Bizhong Xia ◽  
Jie Zhou

The inconsistency in large-scale battery pack significantly degrades the performance of electric vehicles. In order to diminish the inconsistency, the study designs an active equalization method comprising of equalizer and equalization strategy for lithium-ion batteries. A bidirectional flyback transformer equalizer (BFTE) is designed and analyzed. The BFTE is controlled by a pulse width modulation (PWM) controller to output designated balancing currents. Under the purpose of shortening equalization time and reducing energy consumption during the equalization process, this paper proposes an equalization strategy based on variable step size generalized predictive control (VSSGPC). The VSSGPC is improved on the generalized predictive control (GPC) by introducing the Step Size Factor. The VSSGPC surmounts the local limitation of GPC by expanding the control and output horizons to the global equalization process without increasing computation owing to the Step Size Factor. The experiment results in static operating condition indicate that the equalization time and energy consumption are reduced by 8.3% and 16.5%, respectively. Further validation in CC-CV and EUDC operating conditions verifies the performance of the equalizer and rationality of the VSSGPC strategy.


Sign in / Sign up

Export Citation Format

Share Document