Low Order Control Design by Feedback Relevant Identification and Closed Loop Controller Reduction

1997 ◽  
Vol 30 (16) ◽  
pp. 39-44
Author(s):  
A. Raymond De Callafon ◽  
M.J. Paul Van Den Hof
Keyword(s):  
Energies ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3429 ◽  
Author(s):  
Chu ◽  
Yuan ◽  
Hu ◽  
Pan ◽  
Pan

With increasing size and flexibility of modern grid-connected wind turbines, advanced control algorithms are urgently needed, especially for multi-degree-of-freedom control of blade pitches and sizable rotor. However, complex dynamics of wind turbines are difficult to be modeled in a simplified state-space form for advanced control design considering stability. In this paper, grey-box parameter identification of critical mechanical models is systematically studied without excitation experiment, and applicabilities of different methods are compared from views of control design. Firstly, through mechanism analysis, the Hammerstein structure is adopted for mechanical-side modeling of wind turbines. Under closed-loop control across the whole wind speed range, structural identifiability of the drive-train model is analyzed in qualitation. Then, mutual information calculation among identified variables is used to quantitatively reveal the relationship between identification accuracy and variables’ relevance. Then, the methods such as subspace identification, recursive least square identification and optimal identification are compared for a two-mass model and tower model. At last, through the high-fidelity simulation demo of a 2 MW wind turbine in the GH Bladed software, multivariable datasets are produced for studying. The results show that the Hammerstein structure is effective for simplify the modeling process where closed-loop identification of a two-mass model without excitation experiment is feasible. Meanwhile, it is found that variables’ relevance has obvious influence on identification accuracy where mutual information is a good indicator. Higher mutual information often yields better accuracy. Additionally, three identification methods have diverse performance levels, showing their application potentials for different control design algorithms. In contrast, grey-box optimal parameter identification is the most promising for advanced control design considering stability, although its simplified representation of complex mechanical dynamics needs additional dynamic compensation which will be studied in future.


Author(s):  
Olugbenga M. Anubi ◽  
Carl D. Crane

This paper presents the control design and analysis of a non-linear model of a MacPherson suspension system equipped with a magnetorheological (MR) damper. The model suspension considered incorporates the kinematics of the suspension linkages. An output feedback controller is developed using an ℒ2-gain analysis based on the concept of energy dissipation. The controller is effectively a smooth saturated PID. The performance of the closed-loop system is compared with a purely passive MacPherson suspension system and a semi-active damper, whose damping coefficient is tunned by a Skyhook-Acceleration Driven Damping (SH-ADD) method. Simulation results show that the developed controller outperforms the passive case at both the rattle space, tire hop frequencies and the SH-ADD at tire hop frequency while showing a close performance to the SH-ADD at the rattle space frequency. Time domain simulation results confirmed that the control strategy satisfies the dissipative constraint.


Author(s):  
Omid Bagherieh ◽  
Prateek Shah ◽  
Roberto Horowitz

A data driven control design approach in the frequency domain is used to design track following feedback controllers for dual-stage hard disk drives using multiple data measurements. The advantage of the data driven approach over model based approach is that, in the former approach the controllers are directly designed from frequency responses of the plant, hence avoiding any model mismatch. The feedback controller is considered to have a Sensitivity Decoupling Structure. The data driven approach utilizes H∞ and H2 norms as the control objectives. The H∞ norm is used to shape the closed loop transfer functions and ensure closed loop stability. The H2 norm is used to constrain and/or minimize the variance of the relevant signals in time domain. The control objectives are posed as a locally convex optimization problem. Two design strategies for the dual-stage hard disk drive are presented.


Author(s):  
Zineb Lahlou ◽  
Abderrahim EL-Amrani ◽  
Ismail Boumhidi

The work deals finite frequency H<sub>∞</sub> control design for continuous time nonlinear systems, we provide sufficient conditions, ensuring that the closed-loop model is stable. Simulations will be gifted to show level of attenuation that a H<sub>∞</sub> lower can be by our method obtained developed where further comparison.


Author(s):  
Maher Ben Hariz ◽  
Wassila Chagra ◽  
Faouzi Bouani

The design of a low order controller for decoupled MIMO systems is proposed. The main objective of this controller is to guarantee some closed loop time response performances such as the settling time and the overshoot. The controller parameters are obtained by resolving a non-convex optimization problem. In order to obtain an optimal solution, the use of a global optimization method is suggested. In this chapter, the proposed solution is the GGP method. The principle of this method consists of transforming a non-convex optimization problem to a convex one by some mathematical transformations. So as to accomplish the fixed goal, it is imperative to decouple the coupled MIMO systems. To approve the controllers' design method, the synthesis of fixed low order controller for decoupled TITO systems is presented firstly. Then, this design method is generalized in the case of MIMO systems. Simulation results and a comparison study between the presented approach and a PI controller are given in order to show the efficiency of the proposed controller. It is remarkable that the obtained solution meets the desired closed loop time specifications for each system output. It is also noted that by considering the proposed approach the user can fix the desired closed loop performances for each output independently.


2004 ◽  
Vol 2004.57 (0) ◽  
pp. 441-442
Author(s):  
Hiroshi HAMAMATSU ◽  
Kentaro Kondo ◽  
Shigeru FUTAMI ◽  
Teruo TSUJI ◽  
Akihiro YAMAMOTO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document