scholarly journals The Real Time Application of Distributed Parameter State Estimation Theory to a Two Dimensional Heated Ingot

1977 ◽  
Vol 10 (5) ◽  
pp. 451-467 ◽  
Author(s):  
G.K. Lausterer ◽  
W.H. Ray ◽  
H.R. Martens
Automatica ◽  
1978 ◽  
Vol 14 (4) ◽  
pp. 335-344 ◽  
Author(s):  
G.K. Lausterer ◽  
W.H. Ray ◽  
H.R. Martens

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1327 ◽  
Author(s):  
Thiago Soares ◽  
Ubiratan Bezerra ◽  
Maria Tostes

This paper proposes the development of a three-phase state estimation algorithm, which ensures complete observability for the electric network and a low investment cost for application in typical electric power distribution systems, which usually exhibit low levels of supervision facilities and measurement redundancy. Using the customers´ energy bills to calculate average demands, a three-phase load flow algorithm is run to generate pseudo-measurements of voltage magnitudes, active and reactive power injections, as well as current injections which are used to ensure the electrical network is full-observable, even with measurements available at only one point, the substation-feeder coupling point. The estimation process begins with a load flow solution for the customers´ average demand and uses an adjustment mechanism to track the real-time operating state to calculate the pseudo-measurements successively. Besides estimating the real-time operation state the proposed methodology also generates nontechnical losses estimation for each operation state. The effectiveness of the state estimation procedure is demonstrated by simulation results obtained for the IEEE 13-bus test network and for a real urban feeder.


Healthcare ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 285
Author(s):  
Chuchart Pintavirooj ◽  
Tanapon Keatsamarn ◽  
Treesukon Treebupachatsakul

Telemedicine has become an increasingly important part of the modern healthcare infrastructure, especially in the present situation with the COVID-19 pandemics. Many cloud platforms have been used intensively for Telemedicine. The most popular ones include PubNub, Amazon Web Service, Google Cloud Platform and Microsoft Azure. One of the crucial challenges of telemedicine is the real-time application monitoring for the vital sign. The commercial platform is, by far, not suitable for real-time applications. The alternative is to design a web-based application exploiting Web Socket. This research paper concerns the real-time six-parameter vital-sign monitoring using a web-based application. The six vital-sign parameters are electrocardiogram, temperature, plethysmogram, percent saturation oxygen, blood pressure and heart rate. The six vital-sign parameters were encoded in a web server site and sent to a client site upon logging on. The encoded parameters were then decoded into six vital sign signals. Our proposed multi-parameter vital-sign telemedicine system using Web Socket has successfully remotely monitored the six-parameter vital signs on 4G mobile network with a latency of less than 5 milliseconds.


2015 ◽  
Vol 74 (1) ◽  
Author(s):  
Muhammad Zaki Mustapa

This paper discusses on attitude control of a quadcopter unmanned aerial vehicle (UAV) in real time application. Newton-Euler equation is used to derive the model of system and the model characteristic is analyzed. The paper describes the controller design method for the hovering control of UAV automatic vertical take-off system. In order to take-off the quadcopter and stable the altitude, PID controller has been designed. The scope of study is to develop an altitude controller of the vertical take-off as realistic as possible. The quadcopter flight system has nonlinear characteristics. A simulation is conducted to test and analyze the control performance of the quadcopter model. The simulation was conducted by using Mat-lab Simulink. On the other hand, for the real time application, the PCI-1711 data acquisition card is used as an interface for controller design which routes from Simulink to hardware. This study showed the controller designs are implemented and tuned to the real system using Real Time Windows Target approach by Mat-Lab Simulink.


Sign in / Sign up

Export Citation Format

Share Document