scholarly journals 810. Induction of CD4 + T Cell-Independent B Cell Responses In Vivo by CD40 Ligand DNA Vaccination: Implications for Vaccine Development

2003 ◽  
Vol 7 (5) ◽  
pp. S312
1999 ◽  
Vol 189 (7) ◽  
pp. 1025-1031 ◽  
Author(s):  
Martin F. Bachmann ◽  
Brian R. Wong ◽  
Régis Josien ◽  
Ralph M. Steinman ◽  
Annette Oxenius ◽  
...  

CD40 ligand (CD40L), a tumor necrosis factor (TNF) family member, plays a critical role in antigen-specific T cell responses in vivo. CD40L expressed on activated CD4+ T cells stimulates antigen-presenting cells such as dendritic cells, resulting in the upregulation of costimulatory molecules and the production of various inflammatory cytokines required for CD4+ T cell priming in vivo. However, CD40L- or CD40-deficient mice challenged with viruses mount protective CD4+ T cell responses that produce normal levels of interferon γ, suggesting a CD40L/CD40-independent mechanism of CD4+ T cell priming that to date has not been elucidated. Here we show that CD4+ T cell responses to viral infection were greatly diminished in CD40-deficient mice by administration of a soluble form of TNF-related activation-induced cytokine receptor (TRANCE-R) to inhibit the function of another TNF family member, TRANCE. Thus, the TRANCE/TRANCE-R interaction provides costimulation required for efficient CD4+ T cell priming during viral infection in the absence of CD40L/CD40. These results also indicate that not even the potent inflammatory microenvironment induced by viral infections is sufficient to elicit efficient CD4+ T cell priming without proper costimulation provided by the TNF family (CD40L or TRANCE). Moreover, the data suggest that TRANCE/TRANCE-R may be a novel and important target for immune intervention.


2019 ◽  
Vol 6 (23) ◽  
pp. 1802219 ◽  
Author(s):  
Jian Lu ◽  
Jing Wu ◽  
Feiting Xie ◽  
Jie Tian ◽  
Xinyi Tang ◽  
...  

1998 ◽  
Vol 72 (7) ◽  
pp. 6138-6145 ◽  
Author(s):  
Narendra Chirmule ◽  
Joseph V. Hughes ◽  
Guang-Ping Gao ◽  
Steven E. Raper ◽  
James M. Wilson

ABSTRACT Adenovirus vectors delivered to lung are being considered in the treatment of cystic fibrosis (CF). Vectors from which E1 has been deleted elicit T- and B-cell responses which confound their use in the treatment of chronic diseases such as CF. In this study, we directly compare the biology of an adenovirus vector from which E1 has been deleted to that of one from which E1 and E4 have been deleted, following intratracheal instillation into mouse and nonhuman primate lung. Evaluation of the E1 deletion vector in C57BL/6 mice demonstrated dose-dependent activation of both CD4 T cells (i.e., TH1 and TH2 subsets) and neutralizing antibodies to viral capsid proteins. Deletion of E4 and E1 had little impact on the CD4 T-cell proliferative response and cytolytic activity of CD8 T cells against target cells expressing viral antigens. Analysis of T-cell subsets from mice exposed to the vector from which E1 and E4 had been deleted demonstrated preservation of TH1 responses with markedly diminished TH2 responses compared to the vector with the deletion of E1. This effect was associated with reduced TH2-dependent immunoglobulin isotypes and markedly diminished neutralizing antibodies. Similar results were obtained in nonhuman primates. These studies indicate that the vector genotype can modify B-cell responses by differential activation of TH1 subsets. Diminished humoral immunity, as was observed with the E1 and E4 deletion vectors in lung, is indeed desired in applications of gene therapy where readministration of the vector is necessary.


2003 ◽  
Vol 198 (7) ◽  
pp. 1011-1021 ◽  
Author(s):  
Mark Y. Sangster ◽  
Janice M. Riberdy ◽  
Maricela Gonzalez ◽  
David J. Topham ◽  
Nicole Baumgarth ◽  
...  

Contact-mediated interactions between CD4+ T cells and B cells are considered crucial for T cell–dependent B cell responses. To investigate the ability of activated CD4+ T cells to drive in vivo B cell responses in the absence of key cognate T–B interactions, we constructed radiation bone marrow chimeras in which CD4+ T cells would be activated by wild-type (WT) dendritic cells, but would interact with B cells that lacked expression of either major histocompatibility complex class II (MHC II) or CD40. B cell responses were assessed after influenza virus infection of the respiratory tract, which elicits a vigorous, CD4+ T cell–dependent antibody response in WT mice. The influenza-specific antibody response was strongly reduced in MHC II knockout and CD40 knockout mice. MHC II–deficient and CD40-deficient B cells in the chimera environment also produced little virus-specific immunoglobulin (Ig)M and IgG, but generated a strong virus-specific IgA response with virus-neutralizing activity. The IgA response was entirely influenza specific, in contrast to the IgG2a response, which had a substantial nonvirus-specific component. Our study demonstrates a CD4+ T cell–dependent, antiviral IgA response that is generated in the absence of B cell signaling via MHC II or CD40, and is restricted exclusively to virus-specific B cells.


PLoS ONE ◽  
2012 ◽  
Vol 7 (3) ◽  
pp. e34377 ◽  
Author(s):  
Aarthi Sundararajan ◽  
Lifang Huan ◽  
Katherine A. Richards ◽  
Glendie Marcelin ◽  
Shabnam Alam ◽  
...  

2016 ◽  
Vol 169 ◽  
pp. 16-27 ◽  
Author(s):  
Geert Leroux-Roels ◽  
Arnaud Marchant ◽  
Jack Levy ◽  
Pierre Van Damme ◽  
Tino F. Schwarz ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (7) ◽  
pp. e102284 ◽  
Author(s):  
Christine M. Coquery ◽  
Nekeithia S. Wade ◽  
William M. Loo ◽  
Jason M. Kinchen ◽  
Kelly M. Cox ◽  
...  

2021 ◽  
Author(s):  
Manon Nayrac ◽  
Mathieu Dube ◽  
Geremy Sannier ◽  
Alexandre Nicolas ◽  
Lorie Marchitto ◽  
...  

Spacing of the BNT162b2 mRNA doses beyond 3 weeks raised concerns about vaccine efficacy. We longitudinally analyzed B cell, T cell and humoral responses to two BNT162b2 mRNA doses administered 16 weeks apart in 53 SARS-CoV-2 naive and previously-infected donors. This regimen elicited robust RBD-specific B cell responses whose kinetics differed between cohorts, the second dose leading to increased magnitude in naive participants only. While boosting did not increase magnitude of CD4+ T cell responses further compared to the first dose, unsupervised clustering analyses of single-cell features revealed phenotypic and functional shifts over time and between cohorts. Integrated analysis showed longitudinal immune component-specific associations, with early Thelper responses post-first dose correlating with B cell responses after the second dose, and memory Thelper generated between doses correlating with CD8 T cell responses after boosting. Therefore, boosting elicits a robust cellular recall response after the 16-week interval, indicating functional immune memory.


Sign in / Sign up

Export Citation Format

Share Document