617 Depressed low frequency-to-high frequency ratio of heart rate variability identifies patients with heart failure and systolic dysfunction at increased risk for sudden death

2006 ◽  
Vol 5 (1) ◽  
pp. 144-144
Author(s):  
G ARBOLISHVILI ◽  
Y ORLOVA ◽  
V MAREEV ◽  
Y BELENKOV
2015 ◽  
Vol 22 (8) ◽  
pp. 1080-1085 ◽  
Author(s):  
Sakari Simula ◽  
Tomi Laitinen ◽  
Tiina M Laitinen ◽  
Tuula Tarkiainen ◽  
Päivi Hartikainen ◽  
...  

Background: Fingolimod modulates sphingosine-1-phosphate receptors that are also found in cardiovascular tissue. Objective: To investigate the effects of fingolimod on cardiac autonomic regulation prospectively. Methods: Twenty-seven relapsing–remitting multiple sclerosis patients underwent 24-hour electrocardiogram recording before, at the first day of fingolimod treatment (1d) and after three months of continuous dosing (3mo). The time interval between two consecutive R-peaks (RR-interval) was measured. Cardiac autonomic regulation was assessed by the various parameters of heart rate variability. Parasympathetic stimulation prolongs the RR-interval and increases heart rate variability while the effects of sympathetic stimulation are mainly the opposite. The low frequency/high frequency ratio reflects sympathovagal balance. Results: From baseline to 1d, a prolongation of the RR-interval ( P<0.001), an increase in the values of various heart rate variability parameters ( P<0.05 to P<0.001) and a decrease in the low frequency/high frequency ratio ( P<0.05) were demonstrated. At 3mo, although the RR-interval remained longer ( P<0.01), the values of various heart rate variability parameters were lower ( P<0.01 to P<0.001) as compared to baseline. At 3mo, the low frequency/high frequency ratio ( P<0.05) was higher in men than in women although no such difference was found at baseline or at 1d. Conclusions: After an initial increase in parasympathetic regulation, continuous fingolimod dosing shifts cardiac autonomic regulation towards sympathetic predominance, especially in men. Careful follow-up of fingolimod-treated relapsing–remitting multiple sclerosis patients is warranted as sympathetic predominance associates generally with impaired outcome. ClinicalTrials.cov: NCT01704183


1995 ◽  
Vol 89 (2) ◽  
pp. 155-164 ◽  
Author(s):  
Massimo Piepoli ◽  
Stamatis Adamopoulos ◽  
Luciano Bernardi ◽  
Peter Sleight ◽  
Andrew J. S. Coats

1. Heart rate variability can be used to evaluate autonomic balance, but it is unclear how inotropic therapy may affect the findings. The aim of the study was to assess whether heart rate variability can differentiate between sympathetic stimulation induced by inotrope infusion or by physical exercise. 2. Ten patients with chronic heart failure (64.3 ± 5.4 years of age) underwent four dobutamine infusions (8-min steps of 5 μg min−1 kg−1) and four supine bicycle exercise tests (5-min steps of 25 W). Plasma noradrenaline was evaluated, as well as the SD of R—R intervals, together with low-frequency (0.03–0.14 Hz) and high-frequency (0.15–0.4 Hz) components of heart rate variability using autoregressive spectral analysis. 3. Exercise and inotrope infusion produced similar changes in heart rate variability. An exercise load of 50 W and a dobutamine infusion of 15 μg min−1 kg−1 gave the following results respectively: heart rate, 120.3 ± 3.0 beats/min versus 110.2 ± 3.0 beats/min; SD, 16.0 ± 1.1 ms versus 16.3 ± 2.5 ms; low-frequency component, 4.3 ± 0.3 ln-ms2 versus 4.4 ± 0.3 ln-ms2 and high-frequency component, 2.6 ± 0.3 ln-ms2 versus 2.2 ± 0.3 ln-ms2. All comparisons were non-significant. The variables of heart rate variability showed high reproducibility in the same subject during different conditions. Noradrenaline was elevated by exercise from 326.0 ± 35.2 pg/ml to 860.1 ± 180.4 pg/ml (P < 0.05), but was unchanged by dobutamine infusion. 4. Heart rate variability changes cannot differentiate between dobutamine infusions and physical exercise, indicating that we should be cautious in evaluating patients undergoing inotropic therapy. The degree of receptor stimulations, rather than the level of sympathetic drive, would appear to determine the changes in heart rate variability.


EP Europace ◽  
2021 ◽  
Vol 23 (Supplement_3) ◽  
Author(s):  
JM Gregoire ◽  
C Gilon ◽  
J Hellinckx ◽  
S Carlier ◽  
H Bersini

Abstract Funding Acknowledgements Type of funding sources: None. Background. The  differentiation  between  vagally  and  non-vagally mediated  atrial fibrillation (AF)  could be useful  to decide  adding  ganglionated  plexi  ablation  (GPA)  to  pulmonary vein isolation (PVI)  in  patients with vagally mediated  AF  onset. The role of the autonomic nervous system in triggering paroxysmal AF can be analyzed through heart rate variability (HRV) parameters. The low frequency/high frequency ratio (LF/HF) is used as an index of sympatho-vagal interaction. Based on clinical criteria, values of LF/HF &lt;1.5 are considered to reflect an increase of vagal modulation.  Purpose Identify  patients with paroxysmal AF who may benefit from GPA in addition to PVI, based on analysis of HRV parameters Material and methods From our database of unselected Holter recordings containing paroxysmal AF episodes, 199 analyzable AF onsets were labelled. We analyzed HRV frequential parameters by segments every 300 RR intervals to identify adrenergic and vagal onsets of AF episodes. We categorized AF onsets, depending of their respective values of LF/HF. We also checked the relationship of these parameters to heart rate (HR). We followed the evolution of the mean normalized values of LF/HF from the beginning of the recordings to the AF onsets (see figure). Results We found a progressive increase of LF/HF  in normalized units  (mean [95% confidence interval]) from  2.44  [2.12-2.76]  to 3.12  [2.85-3.39]  in the adrenergic group  (n = 113)  and a  progressive decrease of LF/HF from  1.51 [1.28-1.75]  to 1.02 [0.95-1.09]  in the  vagal group (n = 86). Differences between adrenergic and vagal AF were highly significant using Mann-Whitney test (p &lt; 0.001). A given patient shows the same type of AF in 80% of cases.  We found no correlation between frequential parameters and HR. Conclusions Our data show  potential  added value of  frequential  HRV  analysis  to  guide additional ganglionated  plexi ablation  to PVI. This  remains  to be demonstrated in a prospective study. The ratio LF/HF should be  considered  to optimize the decision-making process for  the ablation procedure. Abstract Figure. Frequential HRV parameters before AF


1996 ◽  
Vol 91 (1) ◽  
pp. 35-43 ◽  
Author(s):  
John E. Sanderson ◽  
Leata Y. C. Yeung ◽  
Dickens T. K. Yeung ◽  
Richard L. C. Kay ◽  
Brian Tomlinson ◽  
...  

1. Autonomic dysfunction is a major feature of congestive cardiac failure and may have an important role in determining progression and prognosis. The low-frequency/high-frequency ratio derived from power spectral analysis of heart rate variability has been proposed as a non-invasive method to assess sympatho-vagal balance. However, the effects of different respiratory rates or posture are rarely accounted for, but may be relevant in patients with heart failure in whom clinical improvement is accompanied by a fall in respiratory rate and an increased proportion of the day in the upright position. 2. We have assessed the effect of controlled respiration at different rates (10, 15, 20 breaths/min or 0.17, 0.25 and 0.33 Hz), while supine and standing, on power spectral analysis of heart rate and blood pressure variability in 11 patients with heart failure and 10 normal subjects. 3. Heart rate variance and low-frequency power (normalized units) were reduced in patients with heart failure (absent in six). During controlled breathing while supine, the power of the high-frequency component was significantly greater at 10 breaths/min than at 20 breaths/min in patients with heart failure, whether expressed in absolute units (P = 0.005) or percentage of total power (P = 0.03). 4. On standing, controlled breathing in patients with heart failure produced less change in high-frequency power (P = 0.054), but the low-frequency/high-frequency ratio at lower respiratory rates was reduced (P = 0.05). In normal subjects, as expected, respiratory rate had a highly significant effect on high-frequency power. Also, in normal subjects there was the expected increase in heart rate low-frequency power (P = 0.04) moving from supine to standing with an increase in the low-frequency/high-frequency ratio (P = 0.003), while in the patients with heart failure this was absent, reflecting blunted cardiovascular reflexes. 5. Systolic blood pressure low- and high-frequency components and their ratio were significantly affected by respiration (P > 0.03) and change in posture (P > 0.03) in both patients with heart failure and normal subjects, with a significant increase in the low-frequency/high-frequency ratio (P = 0.03) on standing in patients with heart failure, indicating that autonomic modulation of blood pressure is still operating in heart failure. 6. Thus, respiratory rate and changes in posture have a significant effect on measurements derived from spectral analysis of heart rate and blood pressure variability. Studies that use power spectral analysis as a measure of sympatho-vagal balance should control for these variables.


2020 ◽  
Author(s):  
Natasa Reljin ◽  
Hugo F. Posada-Quintero ◽  
Caitlin Eaton-Robb ◽  
Sophia Binici ◽  
Emily Ensom ◽  
...  

BACKGROUND Accumulation of excess body fluid and autonomic dysregulation are clinically important characteristics of acute decompensated heart failure. We hypothesized that transthoracic bioimpedance, a noninvasive, simple method for measuring fluid retention in lungs, and heart rate variability, an assessment of autonomic function, can be used for detection of fluid accumulation in patients with acute decompensated heart failure. OBJECTIVE We aimed to evaluate the performance of transthoracic bioimpedance and heart rate variability parameters obtained using a fluid accumulation vest with carbon black–polydimethylsiloxane dry electrodes in a prospective clinical study (System for Heart Failure Identification Using an External Lung Fluid Device; SHIELD). METHODS We computed 15 parameters: 8 were calculated from the model to fit Cole-Cole plots from transthoracic bioimpedance measurements (extracellular, intracellular, intracellular-extracellular difference, and intracellular-extracellular parallel circuit resistances as well as fitting error, resonance frequency, tissue heterogeneity, and cellular membrane capacitance), and 7 were based on linear (mean heart rate, low-frequency components of heart rate variability, high-frequency components of heart rate variability, normalized low-frequency components of heart rate variability, normalized high-frequency components of heart rate variability) and nonlinear (principal dynamic mode index of sympathetic function, and principal dynamic mode index of parasympathetic function) analysis of heart rate variability. We compared the values of these parameters between 3 participant data sets: control (n=32, patients who did not have heart failure), baseline (n=23, patients with acute decompensated heart failure taken at the time of admittance to the hospital), and discharge (n=17, patients with acute decompensated heart failure taken at the time of discharge from hospital). We used several machine learning approaches to classify participants with fluid accumulation (baseline) and without fluid accumulation (control and discharge), termed <i>with fluid and without fluid</i> groups, respectively. RESULTS Among the 15 parameters, 3 transthoracic bioimpedance (extracellular resistance, R<sub>0</sub>; difference in extracellular-intracellular resistance, R<sub>0</sub> – R<sub>∞</sub>, and tissue heterogeneity, α) and 3 heart rate variability (high-frequency, normalized low-frequency, and normalized high-frequency components) parameters were found to be the most discriminatory between groups (patients with and patients without heart failure). R<sub>0</sub> and R<sub>0</sub> – R<sub>∞</sub> had significantly lower values for patients with heart failure than for those without heart failure (R<sub>0</sub>: <i>P</i>=.006; R<sub>0</sub> – R<sub>∞</sub>: <i>P</i>=.001), indicating that a higher volume of fluids accumulated in the lungs of patients with heart failure. A cubic support vector machine model using the 5 parameters achieved an accuracy of 92% for with fluid and without fluid group classification. The transthoracic bioimpedance parameters were related to intra- and extracellular fluid, whereas the heart rate variability parameters were mostly related to sympathetic activation. CONCLUSIONS This is useful, for instance, for an in-home diagnostic wearable to detect fluid accumulation. Results suggest that fluid accumulation, and subsequently acute decompensated heart failure detection, could be performed using transthoracic bioimpedance and heart rate variability measurements acquired with a wearable vest.


10.2196/18715 ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. e18715
Author(s):  
Natasa Reljin ◽  
Hugo F Posada-Quintero ◽  
Caitlin Eaton-Robb ◽  
Sophia Binici ◽  
Emily Ensom ◽  
...  

Background Accumulation of excess body fluid and autonomic dysregulation are clinically important characteristics of acute decompensated heart failure. We hypothesized that transthoracic bioimpedance, a noninvasive, simple method for measuring fluid retention in lungs, and heart rate variability, an assessment of autonomic function, can be used for detection of fluid accumulation in patients with acute decompensated heart failure. Objective We aimed to evaluate the performance of transthoracic bioimpedance and heart rate variability parameters obtained using a fluid accumulation vest with carbon black–polydimethylsiloxane dry electrodes in a prospective clinical study (System for Heart Failure Identification Using an External Lung Fluid Device; SHIELD). Methods We computed 15 parameters: 8 were calculated from the model to fit Cole-Cole plots from transthoracic bioimpedance measurements (extracellular, intracellular, intracellular-extracellular difference, and intracellular-extracellular parallel circuit resistances as well as fitting error, resonance frequency, tissue heterogeneity, and cellular membrane capacitance), and 7 were based on linear (mean heart rate, low-frequency components of heart rate variability, high-frequency components of heart rate variability, normalized low-frequency components of heart rate variability, normalized high-frequency components of heart rate variability) and nonlinear (principal dynamic mode index of sympathetic function, and principal dynamic mode index of parasympathetic function) analysis of heart rate variability. We compared the values of these parameters between 3 participant data sets: control (n=32, patients who did not have heart failure), baseline (n=23, patients with acute decompensated heart failure taken at the time of admittance to the hospital), and discharge (n=17, patients with acute decompensated heart failure taken at the time of discharge from hospital). We used several machine learning approaches to classify participants with fluid accumulation (baseline) and without fluid accumulation (control and discharge), termed with fluid and without fluid groups, respectively. Results Among the 15 parameters, 3 transthoracic bioimpedance (extracellular resistance, R0; difference in extracellular-intracellular resistance, R0 – R∞, and tissue heterogeneity, α) and 3 heart rate variability (high-frequency, normalized low-frequency, and normalized high-frequency components) parameters were found to be the most discriminatory between groups (patients with and patients without heart failure). R0 and R0 – R∞ had significantly lower values for patients with heart failure than for those without heart failure (R0: P=.006; R0 – R∞: P=.001), indicating that a higher volume of fluids accumulated in the lungs of patients with heart failure. A cubic support vector machine model using the 5 parameters achieved an accuracy of 92% for with fluid and without fluid group classification. The transthoracic bioimpedance parameters were related to intra- and extracellular fluid, whereas the heart rate variability parameters were mostly related to sympathetic activation. Conclusions This is useful, for instance, for an in-home diagnostic wearable to detect fluid accumulation. Results suggest that fluid accumulation, and subsequently acute decompensated heart failure detection, could be performed using transthoracic bioimpedance and heart rate variability measurements acquired with a wearable vest.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Reuben Howden ◽  
Eva Gougian ◽  
Marcus Lawrence ◽  
Samantha Cividanes ◽  
Wesley Gladwell ◽  
...  

Nrf2protects the lung from adverse responses to oxidants, including 100% oxygen (hyperoxia) and airborne pollutants like particulate matter (PM) exposure, but the role ofNrf2on heart rate (HR) and heart rate variability (HRV) responses is not known. We hypothesized that genetic disruption ofNrf2would exacerbate murine HR and HRV responses to severe hyperoxia or moderate PM exposures.Nrf2-/-andNrf2+/+mice were instrumented for continuous ECG recording to calculate HR and HRV (low frequency (LF), high frequency (HF), and total power (TP)). Mice were then either exposed to hyperoxia for up to 72 hrs or aspirated with ultrafine PM (UF-PM). Compared to respective controls, UF-PM induced significantly greater effects on HR (P<0.001) and HF HRV (P<0.001) inNrf2-/-mice compared toNrf2+/+mice.Nrf2-/-mice tolerated hyperoxia significantly less thanNrf2+/+mice (~22 hrs;P<0.001). Reductions in HR, LF, HF, and TP HRV were also significantly greater inNrf2-/-compared toNrf2+/+mice (P<0.01). Results demonstrate thatNrf2deletion increases susceptibility to change in HR and HRV responses to environmental stressors and suggest potential therapeutic strategies to prevent cardiovascular alterations.


Sign in / Sign up

Export Citation Format

Share Document