scholarly journals WS8.2 Evaluation of next generation sequencing as a diagnostic tool for CFTR rare mutation screening

2012 ◽  
Vol 11 ◽  
pp. S16
Author(s):  
D. Beattie ◽  
S.V. Heggarty ◽  
C.A. Graham
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shunqiao Feng ◽  
Lin Han ◽  
Mei Yue ◽  
Dixiao Zhong ◽  
Jing Cao ◽  
...  

Abstract Background Langerhans cell histiocytosis (LCH) is a rare neoplastic disease that occurs in both children and adults, and BRAF V600E is detected in up to 64% of the patients. Several studies have discussed the associations between BRAF V600E mutation and clinicopathological manifestations, but no clear conclusions have been drawn regarding the clinical significance of the mutation in pediatric patients. Results We retrieved the clinical information for 148 pediatric LCH patients and investigated the BRAF V600E mutation using next-generation sequencing alone or with droplet digital PCR. The overall positive rate of BRAF V600E was 60/148 (41%). The type of sample (peripheral blood and formalin-fixed paraffin-embedded tissue) used for testing was significantly associated with the BRAF V600E mutation status (p-value = 0.000 and 0.000). The risk of recurrence declined in patients who received targeted therapy (p-value = 0.006; hazard ratio 0.164, 95%CI: 0.046 to 0.583). However, no correlation was found between the BRAF V600E status and gender, age, stage, specific organ affected, TP53 mutation status, masses close to the lesion or recurrence. Conclusions This is the largest pediatric LCH study conducted with a Chinese population to date. BRAF V600E in LCH may occur less in East Asian populations than in other ethnic groups, regardless of age. Biopsy tissue is a more sensitive sample for BRAF mutation screening because not all of circulating DNA is tumoral. Approaches with low limit of detection or high sensitivity are recommended for mutation screening to avoid type I and II errors.


2012 ◽  
Vol 14 (6) ◽  
pp. 602-612 ◽  
Author(s):  
Maurice Chan ◽  
Shen Mo Ji ◽  
Zhen Xuan Yeo ◽  
Linda Gan ◽  
Eric Yap ◽  
...  

2017 ◽  
Vol 64 (10) ◽  
pp. 947-954 ◽  
Author(s):  
Atsushi Hattori ◽  
Yuko Katoh-Fukui ◽  
Akie Nakamura ◽  
Keiko Matsubara ◽  
Tsutomu Kamimaki ◽  
...  

2017 ◽  
Vol 12 (1) ◽  
pp. S787-S788
Author(s):  
Umberto Malapelle ◽  
Clara Mayo ◽  
Danilo Rocco ◽  
Monica Garzon ◽  
Pasquale Pisapia ◽  
...  

2018 ◽  
Vol 156 (10) ◽  
pp. 1196-1204 ◽  
Author(s):  
Camilo Mestanza ◽  
Ricardo Riegel ◽  
Santiago C. Vásquez ◽  
Diana Veliz ◽  
Nicolás Cruz-Rosero ◽  
...  

AbstractQuinoa (Chenopodium quinoaWilld) is a dicotyledonous annual species belonging to the family Amaranthaceae, which is nutritionally well balanced in terms of its oil, protein and carbohydrate content. Targeting-induced local lesions in genomes (the TILLING strategy) was employed to find mutations in acetolactate synthase (AHAS) genes in a mutant quinoa population. TheAHASgenes were targeted because they are common enzyme target sites for five herbicide groups. Ethyl methane sulfonate (EMS) was used to induce mutations in theAHASgenes; it was found that 2% EMS allowed a mutation frequency of one mutation every 203 kilobases to be established. In the mutant population created, a screening strategy using pre-selection phenotypic data and next-generation sequencing (NGS) allowed identification of a mutation that alters the amino acid composition of this species (nucleotide 1231 codon GTT→ATT, Val→Ile); however, this mutation did not result in herbicide resistance. The current work shows that TILLING combined with the high-throughput of NGS technologies and an overlapping pool design provides an efficient and economical method for detecting induced mutations in pools of individuals.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 417-417 ◽  
Author(s):  
Alexander Kohlmann ◽  
Vera Grossmann ◽  
Claudia Haferlach ◽  
Beray Kazak ◽  
Sonja Schindela ◽  
...  

Abstract Abstract 417 Chronic myelomonocytic leukemia (CMML) is a clonal hematopoietic malignancy that is characterized by features of both a myeloproliferative neoplasm and a myelodysplastic syndrome. Here, we analyzed 81 CMML cases (45 CMML-1, 36 CMML-2). In chromosome banding analysis 59/76 (77.6%) patients showed a normal karyotype (data not availabel in 5 cases). Recurrent chromosome aberrations were trisomy 8 (n=6; 7.9%), monosomy 7 (n=3; 3.9%), and loss of the Y-chromosome (n=5; 6.6%). Fluorescence in situ hybridization (FISH) detected the deletion of one allele of the TET2 gene in 4/71 cases (5.6%). Thus, the majority of cases can not be genetically characterized by these techniques. Therefore, we applied next-generation sequencing (NGS) technology to investigate 7 candidate genes, represented by 43 PCR-products, at known mutational hotspot regions, i.e. CBL (exons 8 and 9), JAK2 (exons 12 and 14), MPL (exon 10), NRAS (exons 2 and 3), and KRAS (exons 2 and 3). In addition, complete coding regions were analyzed for RUNX1 (beta isoform) and TET2. NGS was performed using 454 FLX amplicon chemistry (Roche Diagnostics Corporation, Branford, CT). The median number of base pairs sequenced per patient was 9.24 Mb. For each target gene a median of 911 reads was generated (coverage range: 736-fold to 1606-fold). This approach allowed a high-sensitive detection of molecular mutations, e.g. detecting the JAK2 V617F mutation down to 1.16% of reads. In total, 146 variances were detected by this comprehensive molecular mutation screening (GS Amplicon Variant Analyzer software version 2.0.01). In 80.4% of variances consistent results were obtained after confirming NGS mutations with melting curve analysis and conventional sequencing. In the remaining discrepant variances (19.6%) NGS deep-sequencing outperformed conventional methods due to the higher sensitivity of the platform. After excluding 19 polymorphisms or silent mutations 127 distinct mutations in 61/81 patients (75.3%) were detected: CBL: n=21 point mutations and one deletion (18 bp) found in 20 cases (24%); JAK2: n=8 mutations (V617F) found in 8 cases (9.8%); MPL: no mutations found; NRAS: n=23 mutations found in 18 cases (22.2%); KRAS: n=12 mutations found in 10 cases (12.3%); RUNX1: n=6 point mutations and one deletion (14 bp) found in 7 cases (8.6%); and TET2: n=49 point mutations and 6 deletions (2-19 bp; 5/6 out-of-frame) found in 41 cases (50.6%). Furthermore, in 21 TET2-mutated cases 11 mutations previously described in the literature were detectable, whereas 28 cases carried novel mutations (n=28). In the cohort of TET2-mutated cases 17/41 (41.3%) patients harbored TET2 abnormalities as sole aberration. Interestingly, CBL mutations were found to be significantly associated with TET2 mutations (Fisher's exact test, p=0.008). In 17 of 20 (85.0%) CBL-mutated cases TET2 abnormalities were concomitantly observed. In contrast, no significant associations were found between any of the point mutations or deletions and the karyotype. There were also no associations observed between molecular aberrations and the diagnostic categories CMML-1 and CMML-2. With respect to clinical data a trend for better outcome was seen for patients that carried either or both TET2 and CBL mutations (median OS 130.4 vs. 17.3 months, alive at 2 yrs: 72.0% vs. 43.9%; p=0.13). In conclusion, 75.3% of CMMLs harbored at least one molecular aberration. In median 2 mutations per case were observed. Compared to limited data from the literature we detected not only a higher frequency of CBL mutations, but also add data on novel TET2 mutations. In particular, comprehensive NGS screening here for the first time has demonstrated its strength to further genetically characterize and delineate prognostic groups within this type of hematological malignancy. Disclosures: Kohlmann: MLL Munich Leukemia Laboratory: Employment. Grossmann:MLL Munich Leukemia Laboratory: Employment. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership. Kazak:MLL Munich Leukemia Laboratory: Employment. Schindela:MLL Munich Leukemia Laboratory: Employment. Weiss:MLL Munich Leukemia Laboratory: Employment. Dicker:MLL Munich Leukemia Laboratory: Employment. Schnittger:MLL Munich Leukemia Laboratory: Equity Ownership. Kern:MLL Munich Leukemia Laboratory: Equity Ownership. Haferlach:MLL Munich Leukemia Laboratory: Equity Ownership.


Sign in / Sign up

Export Citation Format

Share Document