scholarly journals P211 129Xe ventilation MRI and LCI to assess acute maximal exercise as a method of airway clearance

2019 ◽  
Vol 18 ◽  
pp. S116-S117
Author(s):  
L. Smith ◽  
H. Marshall ◽  
G. Norquay ◽  
G. Collier ◽  
O. Rodgers ◽  
...  
1991 ◽  
Vol 65 (01) ◽  
pp. 082-086 ◽  
Author(s):  
G Dooijewaard ◽  
A de Boer ◽  
P N C Turion ◽  
A F Cohen ◽  
D D Breimer ◽  
...  

SummaryThe enhancement of the blood fibrinolytic potential by physical exercise is generally attributed to the release of tissue-type plasminogen activator (t-PA) from the vessel wall. In this study we have investigated the possible contribution of urokinase-type plasminogen activator (u-PA).Six healthy male volunteers (age 21–25 years) were screened for their ability to perform maximal exercise for their age-group for 12 min on a bicycle ergometer. Subsequently, on one occasion they were required to remain supine for 2 h (from 8.30 a. m. onwards) and on another they performed maximal exercise (from 9.00 a.m. onwards). During exercise an increase in u-PA antigen and plasmin-activatable pro-urokinase (proUK) activity, concurrent with t-PA antigen and euglobulin t-PA activity, was observed in all six volunteers, while at rest these parameters remained unaffected. Mean u-PA- and t-PA antigen increased, respectively, from 4.2 ± 1.0 ng/ml and 5.8 ± 2.1 ng/ml before exercise to 9.8 ± 3.0 ng/ml and 18.3 ± 3.8 ng/ml (peak). Mean plasminactivatable proUK activity and t-PA activity increased, respectively, from 2.1 ± 0.4 ng/ml and 0.3 ± 0.2 ng/ml before exercise to 4.3 ± 1.7 ng/ml and 7.2 ± 4.0 ng/ml (peak). The increases were statistically significant throughout (paired t-test, pre vs post, antigen P <0.005 and activity P <0.02). After cessation of exercise u-PA and t-PA declined concurrently to normal values with a 50"/" decay in about 5 min. In conclusion, we found that both u-PA antigen and plasmin-activatable proUK activity are, concurrently with t-PA, enhanced upon exercise and, therefore, we consider that u-PA also contributes to – and co-operates in – the enhancement of the blood fibrinolytic potential and activity under these conditions.


2020 ◽  
Vol 14 (1) ◽  
pp. 05-12
Author(s):  
Ketaki Poorey ◽  
◽  
Manish Lamoria ◽  
Elvy Oommen ◽  
Sushil Sharma ◽  
...  
Keyword(s):  

Circulation ◽  
1975 ◽  
Vol 52 (2) ◽  
pp. 173-177 ◽  
Author(s):  
AJ Merrill ◽  
C Thomas ◽  
E Schechter ◽  
R Cline ◽  
R Armstrong ◽  
...  

1990 ◽  
Vol 68 (5) ◽  
pp. 2177-2181 ◽  
Author(s):  
M. Manohar

Regional distribution of diaphragmatic blood flow (Q; 15-microns-diam radionuclide-labeled microspheres) was studied in normal (n = 7) and laryngeal hemiplegic (LH; n = 7) ponies to determine whether the added stress of inspiratory resistive breathing during maximal exercise may cause 1) redistribution of diaphragmatic Q and 2) crural diaphragmatic Q to exceed that in maximally exercising normal ponies. LH-induced augmentation of already high exertional work of breathing resulted in diminished locomotor exercise capacity so that maximal exercise in LH ponies occurred at 25 km/h compared with 32 km/h for normal ponies. The costal and crural regions received similar Q in both groups at rest. However, exercise-induced increments in perfusion were significantly greater in the costal region of the diaphragm. At 25 km/h, costal diaphragmatic perfusion was 154 and 143% of the crural diaphragmatic Q in normal and LH ponies. At 32 km/h, Q in costal diaphragm of normal ponies was 136% of that in the crural region. Costal and crural diaphragmatic Q in LH ponies exercised at 25 km/h exceeded that for normal ponies but was similar to the latter during exercise at 32 km/h. Perfusion pressure for the three conditions was also similar. It is concluded that diaphragmatic perfusion heterogeneity in exercising ponies was preserved during the added stress of inspiratory resistive breathing. It was also demonstrated that vascular resistance in the crural and costal regions of the diaphragm in maximally exercised LH ponies remained similar to that in maximally exercising normal ponies.


Sign in / Sign up

Export Citation Format

Share Document