Physical Exercise Induces Enhancement of Urokinase-Type Plasminogen Activator (u-PA) Levels in Plasma

1991 ◽  
Vol 65 (01) ◽  
pp. 082-086 ◽  
Author(s):  
G Dooijewaard ◽  
A de Boer ◽  
P N C Turion ◽  
A F Cohen ◽  
D D Breimer ◽  
...  

SummaryThe enhancement of the blood fibrinolytic potential by physical exercise is generally attributed to the release of tissue-type plasminogen activator (t-PA) from the vessel wall. In this study we have investigated the possible contribution of urokinase-type plasminogen activator (u-PA).Six healthy male volunteers (age 21–25 years) were screened for their ability to perform maximal exercise for their age-group for 12 min on a bicycle ergometer. Subsequently, on one occasion they were required to remain supine for 2 h (from 8.30 a. m. onwards) and on another they performed maximal exercise (from 9.00 a.m. onwards). During exercise an increase in u-PA antigen and plasmin-activatable pro-urokinase (proUK) activity, concurrent with t-PA antigen and euglobulin t-PA activity, was observed in all six volunteers, while at rest these parameters remained unaffected. Mean u-PA- and t-PA antigen increased, respectively, from 4.2 ± 1.0 ng/ml and 5.8 ± 2.1 ng/ml before exercise to 9.8 ± 3.0 ng/ml and 18.3 ± 3.8 ng/ml (peak). Mean plasminactivatable proUK activity and t-PA activity increased, respectively, from 2.1 ± 0.4 ng/ml and 0.3 ± 0.2 ng/ml before exercise to 4.3 ± 1.7 ng/ml and 7.2 ± 4.0 ng/ml (peak). The increases were statistically significant throughout (paired t-test, pre vs post, antigen P <0.005 and activity P <0.02). After cessation of exercise u-PA and t-PA declined concurrently to normal values with a 50"/" decay in about 5 min. In conclusion, we found that both u-PA antigen and plasmin-activatable proUK activity are, concurrently with t-PA, enhanced upon exercise and, therefore, we consider that u-PA also contributes to – and co-operates in – the enhancement of the blood fibrinolytic potential and activity under these conditions.

1988 ◽  
Vol 60 (02) ◽  
pp. 247-250 ◽  
Author(s):  
H R Lijnen ◽  
L Nelles ◽  
B Van Hoef ◽  
F De Cock ◽  
D Collen

SummaryRecombinant chimaeric molecules between tissue-type plasminogen activator (t-PA) and single chain urokinase-type plasminogen activator (scu-PA) or two chain urokinase-type plasminogen activator (tcu-PA) have intact enzymatic properties of scu-PA or tcu-PA towards natural and synthetic substrates (Nelles et al., J Biol Chem 1987; 262: 10855-10862). In the present study, we have compared the reactivity with inhibitors of both the single chain and two chain variants of recombinant u-PA and two recombinant chimaeric molecules between t-PA and scu-PA (t-PA/u-PA-s: amino acids 1-263 of t-PA and 144-411 of u-PA; t-PA/u-PA-e: amino acids 1-274 of t-PA and 138-411 of u-PA). Incubation with human plasma in the absence of a fibrin clot for 3 h at 37° C at equipotent concentrations (50% clot lysis in 2 h), resulted in significant fibrinogen breakdown (to about 40% of the normal value) for all two chain molecules, but not for their single chain counterparts. Preincubation of the plasminogen activators with plasma for 3 h at 37° C, resulted in complete inhibition of the fibrinolytic potency of the two chain molecules but did not alter the potency of the single chain molecules. Inhibition of the two chain molecules occurred with a t½ of approximately 45 min. The two chain variants were inhibited by the synthetic urokinase inhibitor Glu-Gly-Arg-CH2CCl with apparent second-order rate constants of 8,000-10,000 M−1s−1, by purified α2-antiplasmin with second-order rate constants of about 300 M−1s−1, and by plasminogen activator inhibitor-1 (PAI-1) with second-order rate constants of approximately 2 × 107 M−1s−1.It is concluded that the reactivity of single chain and two chain forms of t-PA/u-PA chimaers with inhibitors is very similar to that of the single and two chain forms of intact u-PA.


1993 ◽  
Vol 69 (01) ◽  
pp. 056-059 ◽  
Author(s):  
G Himmelreich ◽  
G Dooijewaard ◽  
P Breinl ◽  
W O Bechstein ◽  
P Neuhaus ◽  
...  

SummaryIn orthotopic liver transplantation (OLT) hyperfibrinolysis seems to be of causative importance for intra- and postoperative bleeding. Although recently hyperfibrinolysis has been successfully reduced by intraoperative aprotinin treatment, small increases of fibrinolysis still remain during OLT. Originally, tissue-type plasminogen activator (t-PA) was considered to be responsible for the increases, but the efficacy of aprotinin which inhibits besides plasmin also kallikrein and urokinase-type plasminogen activator (u-PA) suggested also a role for the intrinsic and contact system-dependent plasminogen activators. We investigated the role of u-PA. From 29 patients undergoing OLT with intraoperative aprotinin infusion arterial blood samples were taken at 7 different time points. The preoperative median values for u-PA antigen (u-PA Ag) and plasmin-activatable single-chain u-PA (scu-PA) levels, which were more than 2-fold above normal (both: p <0.01), decreased slightly during the preanhepatic phase and remained unchanged during the anhepatic phase. With reperfusion of the graft liver the two levels decreased significantly (p = 0.0003 and p = 0.006, respectively) to almost normal values, probably due to clearance by the graft liver. Active two-chain u-PA (tcu-PA) was preoperatively 2-fold above the detection limit, remained stable during the preanhepatic phase and increased 2-fold in the anhepatic phase (p = 0.0018). As expected tcu-PA also relapsed upon reperfusion, but to the preoperatively enhanced level, possibly caused by sustained activation of scu-PA by cathepsin B. t-PA activity levels were at the upper end of the normal range preoperatively, slightly increased during preanhepatic and anhepatic phases and decreased significantly with reperfusion. The increases in tcu-PA and t-PA activities during the anhepatic phase coincided with greatly increased fibrinolysis as demonstrated by thrombelastography, indicating that both u-PA and t-PA are involved in the development of fibrinolysis during OLT.One patient was excluded from statistical evaluations because preoperative u-PA Ag, scu-PA, tcu-PA and t-PA activity levels were much higher than in the other 28 patients. In the investigated group this patient was the only one with diffuse peritonitis intraoperatively and severe bleeding complications postoperatively which made retransplantation mandatory.


2011 ◽  
Vol 105 (05) ◽  
pp. 892-900 ◽  
Author(s):  
Naoyuki Kawao ◽  
Nobuo Nagai ◽  
Yukinori Tamura ◽  
Kiyotaka Okada ◽  
Masato Yano ◽  
...  

SummaryUrokinase-type plasminogen activator (u-PA) plays an important role in tissue remodelling through the activation of plasminogen in the liver, but its mechanisms are less well known. Here, we investigated the involvement of u-PA in the accumulation and phenotypic heterogeneity of macrophages at the damaged site during liver repair. After induction of liver injury by photochemical reaction in mice, the subsequent pathological responses and expression of phenotypic markers in activated macrophages were analysed histologically. Fibrinolytic activity at the damaged site was also examined by fibrin zymography. In wild-type mice, the extent of damage decreased gradually until day 14 and was associated with an accumulation of macrophages at the border of the damaged site. In addition, the macrophages that accumulated near the damaged tissue expressed CD206, a marker of highly phagocytic macrophages, on day 7. Further, macrophages that were adjacent to CD206-positive cells expressed inducible nitric oxide synthase (iNOS), a pro-inflammatory marker. u-PA activity increased at the damaged site on days 4 and 7, which distributed primarily at the border region. In contrast, in u-PA-deficient mice, the decrease in damage size and the accumulation of macrophages were impaired. Further, neither CD206 nor iNOS was expressed in the macrophages that accumulated at the border region in u-PA-deficient mice. Mice deficient for the gene encoding either u-PA receptor (u-PAR) or tissue-type plasminogen activator experienced normal recovery during liver repair. These data indicate that u-PA mediates the accumulation of macrophages and their phenotypic heterogeneity at the border of damaged sites through u-PAR-independent mechanisms.


1987 ◽  
Author(s):  
J M Stassen ◽  
D Collen

t-PA and scu-PA, in molar ratios between 1:4 and 4:1 do not act synergically in vitro (Thromb. Haemost. 56,35,1986) but display marked synergism in a rabbit model (Circulation 74, 838, 1986) and in man (Am. Heart J. 112, 1083, 1986). To investigate the mechanism of in vivo synergism in the rabbit model (J. Clin. Invest. 71, 368, 1983), t-PA and scu-PA were infused 1) simultaneously over 4 hrs, 2) t-PA over 1 hr, then 15 min later scu-PA over 2 hrs and 3) scu-PA over 1 hr, then 15 min later t-PA over 2 hrs.Significant synergism on thrombolysis is observed when t-PA and scu-PA are infused simultaneously or when t-PA is followed by scu-PA but not when scu-PA is followed by t-PA. These results suggest that low dose t-PA induces some plasminogen activation, sufficient to partially degrade fibrin, exposing COOH-terminal lysines with high affinity for plasminogen (Eur. J. Biochem. 140, 513, 1984). scu-PA might then activate surface-bound Glu-pla-minogen more efficiently.Sequential therapy with t-PA (or any other agent which "predigests" the thrombus), followed by scu-PA might constitute an alternative to simultaneous infusion of synergistic thrombolytic agents.


2002 ◽  
Vol 87 (02) ◽  
pp. 306-310 ◽  
Author(s):  
P.E. Morange ◽  
D. Bastelica ◽  
M.F. Bonzi ◽  
B. Van Hoef ◽  
D. Collen ◽  
...  

SummaryTo investigate the potential role of tissue-type plasminogen activator (t-PA) or urokinase-type plasminogen activator (u-PA) in development of adipose tissue, we have used a nutritionally induced obesity model in t-PA (t-PA−/−) and u-PA (u-PA−/−) deficient mice. Five week old male wild-type (WT), t-PA−/− or u-PA−/− mice (n = 9 to 16) were fed a high fat diet (HFD, 42% fat). After 16 weeks of HFD, the body weight of t-PA−/− mice was significantly higher than that of WT mice (48 ± 1.1 g vs. 39 ± 2.2 g, p = 0.004). The total weight of the isolated subcutaneous (sc) fat deposit was higher in t-PA−/− than in WT mice (2.4 ± 0.22 g vs. 1.2 ± 0.29 g, p = 0.002), accompanied with higher adipocyte diameters (80 ± 1.7 µm vs. 61 ± 4.7 µm, p < 0.01). These differences were not observed in the intra-abdominal fat deposit. The number of stroma cells in both adipose tissue territories was increased in t-PA−/− as compared to WT mice (2.0 ± 0.13 vs. 1.5 ± 0.10 p = 0.02 and 3.0 ± 0.17 vs 1.6 ± 0.17, p = 0.0001, stroma cells/ adipocytes in sc and intra-abdominal tissue, respectively), partly as a result of an increased number of endothelial cells (192 ± 9 vs. 154 ± 18 p = 0.06 and 108 ± 13 vs. 69 ± 8 p = 0.04 CD31 stained/adipocyte area). In contrast the weight gain and adipose tissue development in u-PA−/− mice was not different from that in WT mice. These data suggest that t-PA but not u-PA plays a role in adipose tissue development.


Sign in / Sign up

Export Citation Format

Share Document