scholarly journals 587: Suppression of nonsense mutations in the CFTR gene by RNA-guided RNA pseudouridylation

2021 ◽  
Vol 20 ◽  
pp. S279
Author(s):  
H. Adachi ◽  
J. Chen ◽  
P. Morais ◽  
Y. Yu
Keyword(s):  
2021 ◽  
Vol 22 (21) ◽  
pp. 11972
Author(s):  
Arianna Venturini ◽  
Anna Borrelli ◽  
Ilaria Musante ◽  
Paolo Scudieri ◽  
Valeria Capurro ◽  
...  

Cystic fibrosis (CF) is caused by loss of function of the CFTR chloride channel. A substantial number of CF patients carry nonsense mutations in the CFTR gene. These patients cannot directly benefit from pharmacological correctors and potentiators that have been developed for other types of CFTR mutations. We evaluated the efficacy of combinations of drugs targeting at various levels the effects of nonsense mutations: SMG1i to protect CFTR mRNA from nonsense-mediated decay (NMD), G418 and ELX-02 for readthrough, VX-809 and VX-445 to promote protein maturation and function, PTI-428 to enhance CFTR protein synthesis. We found that the extent of rescue and sensitivity to the various agents is largely dependent on the type of mutation, with W1282X and R553X being the mutations most and least sensitive to pharmacological treatments, respectively. In particular, W1282X-CFTR was highly responsive to NMD suppression by SMG1i but also required treatment with VX-445 corrector to show function. In contrast, G542X-CFTR required treatment with readthrough agents and VX-809. Importantly, we never found cooperativity between the NMD inhibitor and readthrough compounds. Our results indicate that treatment of CF patients with nonsense mutations requires a precision medicine approach with the design of specific drug combinations for each mutation.


2016 ◽  
Vol 15 ◽  
pp. S53
Author(s):  
A. Holubová ◽  
M. Libile ◽  
L. Dvořáková ◽  
V. Skalická ◽  
J. Bartošová ◽  
...  
Keyword(s):  

2001 ◽  
Vol 120 (5) ◽  
pp. A646-A646
Author(s):  
F MAIRE ◽  
T BIENVENU ◽  
C AQUAVIVA ◽  
F TRIVIN ◽  
P LEVY

1996 ◽  
Vol 75 (06) ◽  
pp. 870-876 ◽  
Author(s):  
José Manuel Soria ◽  
Lutz-Peter Berg ◽  
Jordi Fontcuberta ◽  
Vijay V Kakkar ◽  
Xavier Estivill ◽  
...  

SummaryNonsense mutations, deletions and splice site mutations are a common cause of type I protein C deficiency. Either directly or indirectly by altering the reading frame, these' lesions generate or may generate premature stop codons and could therefore be expected to result in premature termination of translation. In this study, the possibility that such mutations could instead exert their pathological effects at an earlier stage in the expression pathway, through “allelic exclusion” at the RNA level, was investigated. Protein C (PROC) mRNA was analysed in seven Spanish type I protein C deficient patients heterozygous for two nonsense mutations, a 7bp deletion, a 2bp insertion and three splice site mutations. Ectopic RNA transcripts from patient and control lymphocytes were analysed by RT-PCR and direct sequencing of amplified PROC cDNA fragments. The nonsense mutations and the deletion were absent from the cDNAs indicating that only mRNA derived from the normal allele had been expressed. Similarly for the splice site mutations, only normal PROC cDNAs were obtained. In one case, exclusion of the mutated allele could be confirmed by polymorphism analysis. In contrast to these six mutations, the 2 bp insertion was not associated with loss of mRNA from the mutated allele. In this case, cDNA analysis revealed the absence of 19 bases from the PROC mRNA consistent with the generation and utilization of a cryptic splice site 3’ to the site of mutation, which would result in a frameshift and a premature stop codon. It is concluded that allelic exclusion is a common causative mechanism in those cases of type I protein C deficiency which result from mutations that introduce premature stop codons


Author(s):  
S.A. Smirnikhina ◽  
◽  
A.A. Anuchina ◽  
K.S. Kochergin-Nikitsky ◽  
E.P. Adilgereeva ◽  
...  

2017 ◽  
Vol 17 (1) ◽  
Author(s):  
Siyong Teng ◽  
Jian Huang ◽  
Zhan Gao ◽  
Jie Hao ◽  
Yuejin Yang ◽  
...  

2004 ◽  
Vol 50 (11) ◽  
pp. 2019-2027 ◽  
Author(s):  
Scott C Johnson ◽  
David J Marshall ◽  
Gerda Harms ◽  
Christie M Miller ◽  
Christopher B Sherrill ◽  
...  

Abstract Background: All states require some kind of testing for newborns, but the policies are far from standardized. In some states, newborn screening may include genetic tests for a wide range of targets, but the costs and complexities of the newer genetic tests inhibit expansion of newborn screening. We describe the development and technical evaluation of a multiplex platform that may foster increased newborn genetic screening. Methods: MultiCode® PLx involves three major steps: PCR, target-specific extension, and liquid chip decoding. Each step is performed in the same reaction vessel, and the test is completed in ∼3 h. For site-specific labeling and room-temperature decoding, we use an additional base pair constructed from isoguanosine and isocytidine. We used the method to test for mutations within the cystic fibrosis transmembrane conductance regulator (CFTR) gene. The developed test was performed manually and by automated liquid handling. Initially, 225 samples with a range of genotypes were tested retrospectively with the method. A prospective study used samples from >400 newborns. Results: In the retrospective study, 99.1% of samples were correctly genotyped with no incorrect calls made. In the perspective study, 95% of the samples were correctly genotyped for all targets, and there were no incorrect calls. Conclusions: The unique genetic multiplexing platform was successfully able to test for 31 targets within the CFTR gene and provides accurate genotype assignments in a clinical setting.


Sign in / Sign up

Export Citation Format

Share Document