Development of 3D Fem Software for Two-Phase Flow and its Application to Horonobe Natural Gas Simulation

Author(s):  
H. Li ◽  
M. Sato ◽  
T. Sakai
1977 ◽  
Vol 99 (3) ◽  
pp. 343-347 ◽  
Author(s):  
L. T. Smith ◽  
J. W. Murdock ◽  
R. S. Applebaum

The two-phase flow correlations developed by Murdock, James, Marriott, and Smith and Leang are evaluated for the case of flow through sharp edge measuring orifices which physically meet ASME standards for flow measurement. The evaluation is based on two sets of consistent orifice flow data. The first data base consists of 34 test points for the flow of steam-water mixtures. The second data base consists of 81 data points for the flow of air-water, natural gas-water, natural gas-salt water, and natural gas-distillate mixtures. The root mean square fractional deviation of each correlation is used to determine its predictive reliability. Computed root mean square fraction deviations for steam-water flows are: James, ±0.081; Marriott, ±0.114; Murdock, ±0.141; Smith and Leang, ±0.218. For the case of gas-liquid flows, the values are: Murdock, ±0.074; James, ±0.178; Smith and Leang, ±0.183; Marriott, ±0.458.


1962 ◽  
Vol 84 (4) ◽  
pp. 419-432 ◽  
Author(s):  
J. W. Murdock

This paper presents a practical method for computing two-phase flow rates through AGA-ASME stamdard orifice meters to a tolerance of 1.5 per cent. A rational equation is developed modifying the present single-phase metering equation by the introduction of one experimentally determined constant and permitting the use of data already contained in the ASME Fluid Meters Research Committee publications. Equations are also given for computing the two-phase flow of natural gas using the American Gas Association Report No. 3. No additional data are needed for the solution of two-phase flow metering problems. The experimental constant is derived from the analysis of 90 test points for two phase flow of steam-water, air-water, natural gas-water, natural gas-salt water, and natural gas-distillate combinations. Three separate test series are described for orifices equipped with radius, flange, and pipe tap locations in 2 1/2, 3, and 4-inch pipe with beta ratios ranging from 0.25 to 0.50. Pressures ranged from atmospheric to 920 psia, differentials from 10 to 500 inches of water, and liquid weight fractions from 2 to 89 per cent. Temperatures were from 50 to 500 F and Reynolds numbers for the liquid from 50 to 50,000 and for the gas from 15,000 to 1,000,000. These data were correlated to a standard deviation of 0.75 per cent. The areas where further research is needed to increase the universality of the two-phase metering equation are delineated.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Baojin Wang ◽  
Zhongyang Wang ◽  
Liuci Wang ◽  
Pengyu Sun

Natural gas hydrate (NGH) is a kind of new type green energy source with giant reserves which has been thought of highly by energy explorers in the world. However, NGH breaks down to produce some natural gas that enters the annulus and flows together with the drilling fluid. The gas-liquid two-phase flow can have an impact on the work of the drill string. Therefore, it is important to study gas-liquid two-phase flow in the annulus on the dynamic characteristics of the drill string. In this article, taking a single drill string as the research object, a fluid-structure coupled finite element mathematical model of two-phase flow in the annulus and drill string is established based on computational fluid dynamics and computational structural dynamics theory. The finite element numerical simulation method is used to analyze the influence of drilling fluid and natural gas in the annulus on the dynamic characteristics of the drill string. The simulation analysis shows the following: (1) The motion of drilling fluid or natural gas in the annulus will reduce the natural frequency of the drill string, and the drilling fluid has a greater impact on the natural frequency of the drill string. (2) When single-phase drilling fluid flows in the annulus, the displacement peak in different directions, maximum equivalent stress, and strain of the drill string increase with the increase of the drilling fluid flow velocity or pressure, and the drilling fluid pressure has a more significant effect. (3) When the gas-liquid two-phase fluid flows in the annulus, the displacement peak, maximum equivalent stress, velocity amplitude, and acceleration amplitude of the drill string all increase with the natural gas flow velocity and natural gas content increase, and the natural gas flow velocity has a more significant effect.


Sign in / Sign up

Export Citation Format

Share Document