Mucosal integrity and apoptosis: Efficient and rapid execution of programmed cell death in primary human intestinal epithelial cells which die of apoptosis as they reach the intestinal lumen

2000 ◽  
Vol 32 ◽  
pp. A16
Author(s):  
J. Grossmann ◽  
K. Walther ◽  
M. Artinger ◽  
C. Fiocchi ◽  
A.D. Levine ◽  
...  
2001 ◽  
Vol 281 (2) ◽  
pp. G323-G332 ◽  
Author(s):  
M. C. Buresi ◽  
E. Schleihauf ◽  
N. Vergnolle ◽  
A. Buret ◽  
J. L. Wallace ◽  
...  

The thrombin receptor, protease-activated receptor-1 (PAR-1), has wide tissue distribution and is involved in many physiological functions. Because thrombin is in the intestinal lumen and mucosa during inflammation, we sought to determine PAR-1 expression and function in human intestinal epithelial cells. RT-PCR showed PAR-1 mRNA expression in SCBN cells, a nontransformed duodenal epithelial cell line. Confluent SCBN monolayers mounted in Ussing chambers responded to PAR-1 activation with a Cl−-dependent increase in short-circuit current. The secretory effect was blocked by BaCl2and the Ca2+-ATPase inhibitor thapsigargin, but not by the L-type Ca2+channel blocker verapamil or DIDS, the nonselective inhibitor of Ca2+-dependent Cl−transport. Responses to thrombin and PAR-1-activating peptides exhibited auto- and crossdesensitization. Fura 2-loaded SCBN cells had increased fluorescence after PAR-1 activation, indicating increased intracellular Ca2+. RT-PCR showed that SCBN cells expressed mRNA for the cystic fibrosis transmembrane conductance regulator (CFTR) and hypotonicity-activated Cl−channel-2 but not for the Ca2+-dependent Cl−channel-1. PAR-1 activation failed to increase intracellular cAMP, suggesting that the CFTR channel is not involved in the Cl−secretory response. Our data demonstrate that PAR-1 is expressed on human intestinal epithelial cells and regulates a novel Ca2+-dependent Cl−secretory pathway. This may be of clinical significance in inflammatory intestinal diseases with elevated thrombin levels.


Genes ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1193
Author(s):  
Chinmoy Saha ◽  
Deborah Horst-Kreft ◽  
Inez Kross ◽  
Peter J. van der Spek ◽  
Rogier Louwen ◽  
...  

The zoonotic human pathogen Campylobacter jejuni is known for its ability to induce DNA-damage and cell death pathology in humans. The molecular mechanism behind this phenomenon involves nuclear translocation by Cas9, a nuclease in C. jejuni (CjeCas9) that is the molecular marker of the Type II CRISPR-Cas system. However, it is unknown via which cellular pathways CjeCas9 drives human intestinal epithelial cells into cell death. Here, we show that CjeCas9 released by C. jejuni during the infection of Caco-2 human intestinal epithelial cells directly modulates Caco-2 transcriptomes during the first four hours of infection. Specifically, our results reveal that CjeCas9 activates DNA damage (p53, ATM (Ataxia Telangiectasia Mutated Protein)), pro-inflammatory (NF-κB (Nuclear factor-κB)) signaling and cell death pathways, driving Caco-2 cells infected by wild-type C. jejuni, but not when infected by a cas9 deletion mutant, towards programmed cell death. This work corroborates our previous finding that CjeCas9 is cytotoxic and highlights on a RNA level the basal cellular pathways that are modulated.


2020 ◽  
Vol 5 (52) ◽  
pp. eabd2876
Author(s):  
Zhan Zhang ◽  
Jun Zou ◽  
Zhenda Shi ◽  
Benyue Zhang ◽  
Lucie Etienne-Mesmin ◽  
...  

Bacterial flagellin can elicit production of TLR5-mediated IL-22 and NLRC4-mediated IL-18 cytokines that act in concert to cure and prevent rotavirus (RV) infection. This study investigated the mechanism by which these cytokines act to impede RV. Although IL-18 and IL-22 induce each other’s expression, we found that IL-18 and IL-22 both impeded RV independently of one another and did so by distinct mechanisms that involved activation of their cognate receptors in intestinal epithelial cells (IEC). IL-22 drove IEC proliferation and migration toward villus tips, which resulted in increased extrusion of highly differentiated IEC that serve as the site of RV replication. In contrast, IL-18 induced cell death of RV-infected IEC thus directly interrupting the RV replication cycle, resulting in spewing of incompetent virus into the intestinal lumen and causing a rapid drop in the number of RV-infected IEC. Together, these actions resulted in rapid and complete expulsion of RV, even in hosts with severely compromised immune systems. These results suggest that a cocktail of IL-18 and IL-22 might be a means of treating viral infections that preferentially target short-lived epithelial cells.


2012 ◽  
Vol 1820 (12) ◽  
pp. 1867-1878 ◽  
Author(s):  
Carolina O. Souza ◽  
Giani F. Santoro ◽  
Vanessa R. Figliuolo ◽  
Hayandra Ferreira Nanini ◽  
Heitor S.P. de Souza ◽  
...  

1995 ◽  
Vol 131 (6) ◽  
pp. 1587-1598 ◽  
Author(s):  
J Rak ◽  
Y Mitsuhashi ◽  
V Erdos ◽  
S N Huang ◽  
J Filmus ◽  
...  

Deregulation of molecular pathways controlling cell survival and death, including programmed cell death, are thought to be important factors in tumor formation, disease progression, and response to therapy. Studies devoted to analyzing the role of programmed cell death in cancer have been carried out primarily using conventional monolayer cell culture systems. However the majority of cancers grow as three-dimensional solid tumors. Because gene expression, and possibly function, can be significantly altered under such conditions, we decided to analyze the control and characteristics of cell death using a compatible three-dimensional tissue culture system (multicellular spheroids) and compare the results obtained to those using two-dimensional monolayer cell culture. To do so we selected for study an immortalized, but nontumorigenic line of rat intestinal epithelial cells, called IEC-18, and several tumorigenic variants of IEC-18 obtained by transfection with a mutant (activated) c-H-ras oncogene. The rationale for choosing these cell lines was based in part on the fact that intestinal epithelial cells grow in vivo in a monolayer-like manner and form solid tumors only after sustaining certain genetic mutations, including those involving the ras gene family. We found that the IEC-18 cells, which grow readily and survive in monolayer cell culture, undergo massive cell death within 48-72 h when cultured as multicellular spheroids on a nonadhesive surface. This process was accompanied by a number of features associated with programmed cell death including chromatin condensation (Hoechst 33258 staining) apoptotic morphology, DNA degradation, and a virtual complete loss of colony forming (clonogenic) ability in the absence of apparent membrane damage as well as accumulation of lipid containing vacuoles in the cytoplasm. Moreover, enforced over-expression of a transfected bcl-2 gene could prevent this cell death process from taking place. In marked contrast, three different stably transfected ras clones of IEC-18 survived when grown as multicellular spheroids. In addition, an IEC cell line (called clone 25) carrying its mutant transfected ras under a glucocorticoid inducible promoter survived in three-dimensional culture only when the cells were exposed to dexamethasone. If exposure to dexamethasone was delayed for as long as 48 h the cells nevertheless survived, whereas the cells became irreversibly committed to programmed cell death (PCD) if exposed to dexamethasone after 72 h. These results suggest that intestinal epithelial cells may be programmed to activate a PCD pathway upon detachment from a physiologic two-dimensional monolayer configuration, and that this process of adhesion regulated programmed cell death (ARPCD) can be substantially suppressed by expression of a mutant ras oncogene.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document