A Comparative Study of Various Flow Instability Criteria in Processing Map

2010 ◽  
Vol 39 (5) ◽  
pp. 756-761 ◽  
Author(s):  
Ma Xiong ◽  
Zeng Weidong ◽  
Sun Yu ◽  
Zhao Yongqing ◽  
Wang Shaoli ◽  
...  
2008 ◽  
Vol 385-387 ◽  
pp. 501-504 ◽  
Author(s):  
Jong Taek Yeom ◽  
Eun Jeoung Jung ◽  
Jeoung Han Kim ◽  
Jae Keun Hong ◽  
Nho Kwang Park ◽  
...  

The high temperature deformation behavior and flow instabilities of Ni-Fe-Co base superalloy, INCONEL alloy 783 during hot working process were investigated with process maps consisting of a power dissipation of dynamic materials model (DMM) and various flow instability criteria. In order to establish the processing map of INCONEL alloy 783, hot compression tests were carried out under different temperature and strain rate conditions, with true strain up to 0.7. On the basis of the comparison between processing maps and microstructural analysis, the reliability of various flow instability criteria was estimated. Finally the useful instability criterion for predicting the forming defects was suggested through the compression test results and experimental observations of actual ring rolling process of INCONEL alloy 783.


2012 ◽  
Vol 22 (7) ◽  
pp. 1575-1581 ◽  
Author(s):  
Ge ZHOU ◽  
Hua DING ◽  
Fu-rong CAO ◽  
Yin-ben HAN ◽  
Bei-jiang ZHANG

2013 ◽  
Vol 762 ◽  
pp. 382-386
Author(s):  
Lu Jun Huang ◽  
Yu Zi Zhang ◽  
Lin Geng

The hot compression behavior of in situ TiB whiskers reinforced Ti6Al4V (TiBw/Ti6Al4V) composites with a novel network microstructure is investigated in the temperature range of 900-1100°C and strain rate range of 0.001-10 s-1. The results show that all the stress-strain curves of the composites display peak flow, softening and steady-state. Moreover, the peak flow stress decreases with increasing temperatures and decreasing strain rates. Processing map of the composite is constructed using the dynamic material model (DMM). Dynamic recrystallization (DRX) of α phase is observed in the deformation region corresponding with peak efficiency of the processing map. However, the flow instability region ranged from 900 to 1100°C at strain rates higher than 1.0 s-1should be avoided.


Crystals ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 125
Author(s):  
Haiping Wang ◽  
Dong Liu ◽  
Jianguo Wang ◽  
Yongzhao Shi ◽  
Yong Zheng ◽  
...  

The isothermal compression tests of the nickel-based superalloy Waspaloy were carried out under various temperatures from 1040 to 1120 °C and strain rates from 0.01 to 10 s−1 with the height reduction of 60% and the flow stress curves were obtained. The curves show that the flow stress is greatly affected by the temperature and strain rates. Regression analysis of the experimental results was carried out to learn about the deformation behavior through the Arrhenius equation and came to the conclusion that the activation energy of Waspaloy is 669.7 kJ/mol. The constitutive equation of the Waspaloy was constructed. Meanwhile, the processing maps of the Waspaloy for the power dissipation and the flow instability were constructed. The processing map of the power dissipation and the flow instability depicts that the strain plays a major role in the processing maps. The instability zone is prone to appear at higher strain rates with the increasing strains. According to the instability processing map, there are three unsafe regimes around 1040–1120 °C/1.5–10 s−1, 1040–1080 °C/0.02–0.1 s−1 and 1110–1120 °C/0.02–0.3 s−1 that should be avoided during deformation process. The power dissipation maps show that the maximum dissipation is prone to appear at low strain rates (0.01 s−1) when the strain is about 0.1~0.6 while at middle strain rates (0.1–1 s−1) when the strain is over 0.6, and when the true strain is 0.9, the optimum processing condition is around 1060–1120 °C/0.1–1 s−1. The dynamic microstructures under different temperatures and strain rates were also obtained. We concluded that lower strain rates and higher temperatures are more applicable to obtain fully-recrystallized microstructures. Based on the instability maps and the power dissipation maps and the dynamic microstructures, the optimum deformation conditions are determined to be around 1080–1100 °C/0.1–1 s−1 and 1040–1120 °C/0.01 s−1.


2010 ◽  
Vol 638-642 ◽  
pp. 3616-3621 ◽  
Author(s):  
K.P. Rao ◽  
Y.V.R.K. Prasad ◽  
Norbert Hort ◽  
Karl Ulrich Kainer

The hot working behavior of Mg-3Sn-2Ca alloy has been investigated in the temperature range 300–500 oC and strain rate range 0.0003–10 s-1, with a view to evaluate the mechanisms and optimum parameters of hot working. For this purpose, a processing map has been developed on the basis of the flow stress data obtained from compression tests. The stress-strain curves exhibited steady state behavior at strain rates lower than 0.01 s-1 and at temperatures higher than 350 oC and flow softening occurred at higher strain rates. The processing map exhibited two dynamic recrystallization domains in the temperature and strain rate ranges: (1) 300–420 oC and 0.0003–0.003 s-1, and (2) 420–500 oC and 0.003–1.0 s-1, the latter one being useful for commercial hot working. Kinetic analysis yielded apparent activation energy values of 161 and 175 kJ/mole in domains (1) and (2) respectively. These values are higher than that for self-diffusion in magnesium suggesting that the large volume fraction of intermetallic particles CaMgSn present in the matrix generates considerable back stress. The processing map reveals a wide regime of flow instability which gets reduced with increase in temperature or decrease in strain rate.


2012 ◽  
Vol 482-484 ◽  
pp. 1453-1456
Author(s):  
Ming Man Li ◽  
Qui Jian Xun ◽  
Shang Zhou Zhang

The characterizations of hot working behavior of a near-α titanium alloy using the approach of processing maps are described. Processing map in the α+β region exhibit a domain of the globularization process of lamellar structure and α dynamic recrystallization with a power dissipation efficiency of 0.6-0.9. In the β region the map exhibited a domain centered around 1060°C and 0.1 s-1with a power dissipation efficiency of 0.76 where the β phase undergoes dynamic recrystallization. At higher strain rate flow instability occurs in the α+β region due to adiabatic shear bands formation as well as in the β region due to flow inhomogeneity of β phase.


Sign in / Sign up

Export Citation Format

Share Document