scholarly journals Selenoprotein T gene-therapy using rAAV8 improves cardiac function and remodeling in rats with heart failure through a seleniumdependent pathway

2017 ◽  
Vol 9 (2) ◽  
pp. 180
Author(s):  
I. Boukhalfa ◽  
N. Harouki ◽  
O. Henri ◽  
A. Dumesnil ◽  
A. De Tassigny ◽  
...  
2016 ◽  
Vol 8 (3) ◽  
pp. 255
Author(s):  
Inès Boukhalfa ◽  
Orianne Henri ◽  
Jean-Paul Henry ◽  
Youssef Anouar ◽  
Vincent Richard ◽  
...  

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Sven T Pleger ◽  
Changguang Shan ◽  
Jan Kziencek ◽  
Oliver Mueller ◽  
Raffi Bekeredjian ◽  
...  

Background: Cardiac expression of the Ca-dependent inotropic protein S100A1 is decreased in human end-stage heart failure (HF) and cardiomyocyte-targeted viral-based S100A1 gene transfer rescued failing myocardium in small animal models in vivo and in vitro via improved systolic and diastolic sarcoplasmic reticulum Ca-handling. We therefore hypothesized that cardioselective AAV9-S100A1 gene therapy will improve cardiac performance in a large animal experimental HF model under clinical conditions. Methods and Results: Left ventricular (LV) posterolateral myocardial infarction (MI) was induced in pigs by occlusion of the left coronary circumflex artery and resulted in LV failure (HF) 2 weeks post-MI reflected by a 40% and 27% reduction in LV +dp/dt max. and EF, respectively, as assessed by LV catheterization and echocardiography. Post-MI HF pigs were then randomized for retroinfusion of AAV9-luciferase (luc; n=6, 1.5×10 13 total viral particles, tvp) and AAV9-S100A1 (S100A1; n=6, 1.5×10 13 tvp) driven by a cardioselective promoter via the anterior cardiac vein while the left anterior descending artery was temporarily occluded. 14 weeks after cardiac gene transfer, the S100A1-treated HF group showed significantly enhanced S100A1 protein expression (+46.7±17.9%, P<0.05 vs. control groups) in targeted remote LV myocardium and improved indices of cardiac function and remodeling (luc vs. S100A1: +dp/dtmax: 983±81 vs. 1526±83 mmHg/s, EF: 39±2.1 vs. 61±3.7 %, P<0.05 S100A1 vs. luc, LV endsystolic diameter: luc 4.45±0.1 vs. S100A1 3.43 ±0.1 cm, P<0.05 S100A1 vs. luc, HR: 72±4 vs. 69±2, beats/min, P=n.s. S100A1 vs. luc). Importantly, analyses of renal, hepatic and hematopoetic function showed no alteration as assessed by unchanged transaminases, retention values and white blood cell counts compared to sham pigs. Conclusions: Our translational study provides proof of concept that AAV9-S100A1 based HF gene therapy is feasible and restores cardiac function in a large animal HF model under clinical conditions. Next, certified toxicological analysis and different AAV9-S100A1 dosage protocols will be assessed to eventually advance to first phase I/II clinical studies determining therapeutic efficiency of cardiac S100A1 gene therapy in HF patients.


2012 ◽  
Vol 34 (19) ◽  
pp. 1437-1447 ◽  
Author(s):  
P. W. J. Raake ◽  
P. Schlegel ◽  
J. Ksienzyk ◽  
J. Reinkober ◽  
J. Barthelmes ◽  
...  

Circulation ◽  
2009 ◽  
Vol 119 (1) ◽  
pp. 89-98 ◽  
Author(s):  
Giuseppe Rengo ◽  
Anastasios Lymperopoulos ◽  
Carmela Zincarelli ◽  
Maria Donniacuo ◽  
Stephen Soltys ◽  
...  

2010 ◽  
Vol 13 (1) ◽  
pp. 31 ◽  
Author(s):  
Federico Benetti ◽  
Ernesto Pe�herrera ◽  
Teodoro Maldonado ◽  
Yan Duarte Vera ◽  
Valvanur Subramanian ◽  
...  

Background: End-stage heart failure (HF) is refractory to current standard medical therapy, and the number of donor hearts is insufficient to meet the demand for transplantation. Recent studies suggest autologous stem cell therapy may regenerate cardiomyocytes, stimulate neovascularization, and improve cardiac function and clinical status. Although human fetal-derived stem cells (HFDSCs) have been studied for the treatment of a variety of conditions, no clinical studies have been reported to date on their use in treating HF. We sought to determine the efficacy and safety of HFDSC treatment in HF patients.Methods and Results: Direct myocardial transplantation of HFDSCs by open-chest surgical procedure was performed in 10 patients with HF due to nonischemic, nonchagasic dilated cardiomyopathy. Before and after the procedure, and with no changes in their preoperative doses of medications (digoxin, furosemide, spironolactone, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, betablockers), patients were assessed for New York Heart Association (NYHA) class, performance in the exercise tolerance test (ETT), ejection fraction (EF), left ventricular end-diastolic dimension (LVEDD) via transthoracic echocardiography, performance in the 6-minute walk test, and performance in the Minnesota congestive HF test. All 10 patients survived the operation. One patient had a stroke 3 days after the procedure, and although she later recovered, she was unable to perform the follow-up tests. Another male patient experienced pericardial effusion 3 weeks after the procedure. Although it resolved spontaneously, the patient abandoned his control tests and died 5 months after the procedure. An autopsy of the myocardium suggested that new young cells were present in the cardiomyocyte mix. At 40 months, the mean (SD) NYHA class decreased from 3.4 0.5 to 1.33 0.5 (P = .001); the mean EF increased 31%, from 26.6% 4% to 34.8% 7.2% (P = .005); and the mean ETT increased 291.3%, from 4.25 minutes to 16.63 minutes (128.9% increase in metabolic equivalents, from 2.46 to 5.63) (P < .0001); the mean LVEDD decreased 15%, from 6.85 0.6 cm to 5.80 0.58 cm (P < .001); mean performance in the 6-minute walk test increased by 43.2%, from 251 113.1 seconds to 360 0 seconds (P = .01); the mean distance increased 64.4%, from 284.4 144.9 m to 468.2 89.8 m (P = .004); and the mean result in the Minnesota test decreased from 71 27.3 to 6 5.9 (P < .001).Conclusion: Although these initial findings suggest direct myocardial implantation of HFDSCs is feasible and improves cardiac function in HF patients at 40 months, more clinical research is required to confirm these observations.


Sign in / Sign up

Export Citation Format

Share Document