scholarly journals In vitro Assessment of Electromagnetic Interference due to Low-Band RFID reader/writers on Active Implantable Medical Devices

2009 ◽  
Vol 25 (3) ◽  
pp. 142-152 ◽  
Author(s):  
Shunichi Futatsumori ◽  
Yoshifumi Kawamura ◽  
Takashi Hikage ◽  
Toshio Nojima ◽  
Ben Koike ◽  
...  
2010 ◽  
Vol 638-642 ◽  
pp. 754-759
Author(s):  
Lawrence E. Eiselstein ◽  
Robert D. Caligiuri

Implantable medical devices must be able to withstand the corrosive environment of the human body for 10 or more years without adverse consequences. Most reported research and development has been on developing materials and devices that are biocompatible and resistant to corrosion-fatigue, pitting, and crevice corrosion. However, little has been directly reported regarding implantable materials with respect to the rate at which they generate soluble ions in-vivo. Most of the biocompatibility studies have been done by examining animal implants and cell cultures rather than examining the rate at which these materials leach ions into the body. This paper will discuss what is currently known about the rate at which common implant materials (such as stainless steels, cobalt-chromium alloys, and nitinol) elute ions under in vitro conditions, what the limitations are of such data, and how this data can be used in medical device development.


2021 ◽  
Author(s):  
Ting-Wei Wang ◽  
Ting-Tse Lin

Electromagnetic compatibility (EMC) in biomedical applications is a significant issue related to the user’s life safety, especially in implantable medical devices. Cardiovascular diseases and neurodegenerative disorders are the main chronic disease worldwide that rely on implantable treatment devices such as cardiac pacemakers and vagus nerve stimulators. Both devices must have high EMC to avoid electromagnetic interference-induced health risks, even death during the treatment. Thus, it is important to understand how EMI can affect implantable devices and proactively protect devices from electromagnetic interference, providing reliable and safe implantable device therapy. To this end, this chapter comprehensively introduces the clinical issues and provides EMC requirements for the implantable device such as a cardiac pacemaker and vagus nerve stimulator. The significance of this chapter is to present the EMC important issues in medical engineering that can help to evolve reliable and secure implantable device development in the future.


2005 ◽  
Vol 12 (1) ◽  
Author(s):  
John Wilkinson

The European Commission has launched a public consultation on its proposed amendments to the Medical Devices Directive (MDD) (Dir 93/42/EEC). The aim of the European Commission's proposals is to improve the coherence, transparency and effectiveness of the legislation governing medical devices in line with the recommendations of the report produced in 2002 by the European Commission's Medical Device Experts Group. This report recommended that the requirements for clinical evaluation of medical devices be clarified, transparency be increased by amending post-market surveillance requirements and that the decision making process be improved by empowering the European Commission to make binding decisions where individual national opinions differ on whether a product falls within the definition of 'medical device'. The report also recommended that the three directives governing medical devices (the MDD, the Active Implantable Medical Devices (AIMD) Directive 90/385/EEC and the In-vitro Medical Devices (IVDD) Directive 98/79/EC) should be made more consistent with each other.


2020 ◽  
Vol 35 (1) ◽  
pp. 39-48
Author(s):  
Fan Zhao ◽  
Haiyan Xu ◽  
Wen Xue ◽  
Yan Li ◽  
Jing Sun ◽  
...  

Currently, implantable fibrous medical devices still suffer from invisibility under current clinical imaging techniques. To address this problem, 2, 3, 5-triiodobenzoic acid (TIBA) was recruited as a contrast agent, and then a set of iodinated poly( p-dioxanone) (PPDO) fibers was fabricated via melt-spinning hybrid blends of PPDO with TIBA (PPDO/TIBA). The impact of TIBA content on the rheological behavior of blends was evaluated firstly. The physical, chemical, and thermal properties of PPDO/TIBA fibers were investigated accordingly by SEM, FTIR, DSC, and TGA. Moreover, the radiopaque property of PPDO/TIBA hybrid fibers as a potential radio-opacifying platform for medical devices was verified in vitro and in vivo. Finally, the accumulated release results of the hybrid fibers during in vitro degradation indicate the continual X-ray visibility of the hybrid fibers maintains for 22 days. This intriguing iodinated platform may pave the way for constructing fibrous materials with in-situ X-ray tracking property.


2010 ◽  
Vol 4 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Seth J Seidman ◽  
Wolfgang Kainz ◽  
Jon Casamento ◽  
Donald Witters

This paper presents results of electromagnetic compatibility (EMC) testing of three implantable neurostimulators exposed to the magnetic fields emitted from several walk-through and hand-held metal detectors. The motivation behind this testing comes from numerous adverse event reports involving active implantable medical devices (AIMDs) and security systems that have been received by the Food and Drug Administration (FDA). EMC testing was performed using three neurostimulators exposed to the emissions from 12 walk-through metal detectors (WTMDs) and 32 hand-held metal detectors (HHMDs). Emission measurements were performed on all HHMDs and WTMDs and summary data is presented. Results from the EMC testing indicate possible electromagnetic interference (EMI) between one of the neurostimulators and one WTMD and indicate that EMI between the three neurostimulators and HHMDs is unlikely. The results suggest that worst case situations for EMC testing are hard to predict and testing all major medical device modes and setting parameters are necessary to understand and characterize the EMC of AIMDs.


1999 ◽  
Vol 13 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Andrea Mombelli

To study the etiology and explore possibilities for the therapy of implant-associated infections, investigators have developed and utilized various in vitro models. Major contributions have come from the non-oral medical field, where device-related infections can create life-threatening situations. Microbiological models may include (i) models to study the reaction of micro-organisms to the presence of implants, (ii) models to study the reaction of implant-associated micro-organisms to antimicrobial agents, and (iii) models to study the reaction of the host tissues to the presence of implants contaminated with micro-organisms. In evaluating the potential usefulness of these models for research in oral implantology, one must consider common features as well as important differences between implanted medical devices and oral implants. Although infections associated with implantable medical devices and oral peri-implant infections share a remarkable number of common features, there are also important differences that need attention when findings from in vitro experiments are extrapolated to clinical relevance.


Sign in / Sign up

Export Citation Format

Share Document