implanted medical devices
Recently Published Documents


TOTAL DOCUMENTS

160
(FIVE YEARS 49)

H-INDEX

18
(FIVE YEARS 3)

Antibiotics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 69
Author(s):  
Andriy Hrynyshyn ◽  
Manuel Simões ◽  
Anabela Borges

Surgical site infections (SSIs) are common postoperative occurrences due to contamination of the surgical wound or implanted medical devices with community or hospital-acquired microorganisms, as well as other endogenous opportunistic microbes. Despite numerous rules and guidelines applied to prevent these infections, SSI rates are considerably high, constituting a threat to the healthcare system in terms of morbidity, prolonged hospitalization, and death. Approximately 80% of human SSIs, including chronic wound infections, are related to biofilm-forming bacteria. Biofilm-associated SSIs are extremely difficult to treat with conventional antibiotics due to several tolerance mechanisms provided by the multidrug-resistant bacteria, usually arranged as polymicrobial communities. In this review, novel strategies to control, i.e., prevent and eradicate, biofilms in SSIs are presented and discussed, focusing mainly on two attractive approaches: the use of nanotechnology-based composites and natural plant-based products. An overview of new therapeutic agents and strategic approaches to control epidemic multidrug-resistant pathogenic microorganisms, particularly when biofilms are present, is provided alongside other combinatorial approaches as attempts to obtain synergistic effects with conventional antibiotics and restore their efficacy to treat biofilm-mediated SSIs. Some detection and real-time monitoring systems to improve biofilm control strategies and diagnosis of human infections are also discussed.


2022 ◽  
pp. 127-136
Author(s):  
Ronald P. Brown ◽  
Bruce A. Fowler ◽  
Silvia Fustinoni ◽  
Max Costa, ◽  
Monica Nordberg

2021 ◽  
Vol 12 (4) ◽  
pp. 916-937
Author(s):  
Gabriele Meroni ◽  
Simona Panelli ◽  
Gianvincenzo Zuccotti ◽  
Claudio Bandi ◽  
Lorenzo Drago ◽  
...  

Bacterial populations inhabiting a variety of natural and human-associated niches have the ability to grow in the form of biofilms. A large part of pathological chronic conditions, and essentially all the bacterial infections associated with implanted medical devices or prosthetics, are caused by microorganisms embedded in a matrix made of polysaccharides, proteins, and nucleic acids. Biofilm infections are generally characterized by a slow onset, mild symptoms, tendency to chronicity, and refractory response to antibiotic therapy. Even though the molecular mechanisms responsible for resistance to antimicrobial agents and host defenses have been deeply clarified, effective means to fight biofilms are still required. Lactic acid bacteria (LAB), used as probiotics, are emerging as powerful weapons to prevent adhesion, biofilm formation, and control overgrowth of pathogens. Hence, using probiotics or their metabolites to quench and interrupt bacterial communication and aggregation, and to interfere with biofilm formation and stability, might represent a new frontier in clinical microbiology and a valid alternative to antibiotic therapies. This review summarizes the current knowledge on the experimental and therapeutic applications of LAB to interfere with biofilm formation or disrupt the stability of pathogenic biofilms.


2021 ◽  
Vol 11 (12) ◽  
pp. 3123-3132
Author(s):  
M. Mailsamy ◽  
V. Rukkumani ◽  
K. Srinivasan

There have been significant advances in sensors and device structures in the medical industry, particularly in implanted medical devices. Increasingly complex electronic circuitry may now be implanted in the human body thanks to compact, high-energy batteries and hermetic packaging. These gadgets must adhere to strict power consumption guidelines due to the battery recharging schedule. Designing energy-efficient circuits and systems becomes increasingly important as a result of this fact. Adiabatic circuits provide a hopeful alternative for traditional circuitry in case of low energy design. Because of power-clock phases synchronization complexity, designing and functionally verifying presenting 4-phase adiabatic circuitry takes longer. Accordingly, multiple clock generators are used typically and can reveal enhanced consumption of energy in the network of clock distribution. Furthermore, they are not suitable for designing in high-speed because of their clock skew management and high complexity issues. In this paper, TMEL (True multi-phase energy recovering logic), the first energyrecovering/adiabatic logic family is presented for biomedical applications, which functions using the scheme multiple-phase sinusoidal clocking. Moreover, a system of SCAL, a source-coupled variation with TMEL having enhanced energy efficiency and supply voltage scalability, is introduced. A novel true multi-phase Approach and Source-coupled adiabatic logic for energy effective communication system is proposed. The adiabatic logic is employed for both write and read side operation. The CMOS inverter is integrated with TMEL cascades, which in turn reduces leakage loss. In SCAL, the optimal performance at any operating circumstance is attained byan adjustable current source in each gate. SCAL, and TMEL, are capable of outperforming existing adiabatic logic families concerning operating speed and energy efficiency. The performance analysis was carried and simulated through 45 nm CMOS inverter in terms of leakage power, delay, and power consumption. In particular, for the clock rates that range from 10 MHz to 200 MHz, the proposed SCAL was more energy-efficient and less dissipative on comparing their pipelined or purely combinational CMOS counterparts. In biomedical equipment, the system may be included into the low-power design since it is energy efficient and very robust. Improvements in VLSI technology, such as increased dynamic range, low-voltage EEPROMs (electrically eraseable programmable ROMs), and specific sensor techniques, are also expected to contribute to advancements in implanted medical devices in the near future.


2021 ◽  
Vol 12 (2) ◽  
pp. 401-415
Author(s):  
Henryk Matusiewicz ◽  
Magdalena Richter

There is public concern over the long term systemic health effects of metal released from implanted medical devices that use metal alloys. Systemic toxic side effects have been associated with excessive metal ion release from implants into human biological specimen's circulation, in which cobalt and chromium plays an important role. Cobalt intoxication has become more frequent due to the wide use of metallic medical implants. Despite the technological improvements in replacement metallic medical implants, wear and corrosion products associated with the metal compounds of these implants may result in systemic reactions and toxicities. The current review encompasses a literature of the systemic toxicity studies concerning the effect of metallic wear debris released from wear and corrosion of specific types of implanted medical devices, resulting in a postoperative increase in metal ion levels in bodily fluids and at different organ sites. Release of metallic debris is mainly in the form of particles and ions of different valences, and oxides composed of cobalt and chromium. Toxicological, clinically significant, data regarding "potential hazards" of circulating metals after systemic chronic exposure to the metal ions from metals have been included. This review further highlights some of the clinical features of cobalt toxicity.


2021 ◽  
Vol 30 (4) ◽  
pp. 623-630
Author(s):  
Sara Goering ◽  
Anna Wexler ◽  
Eran Klein

AbstractImplanted medical devices—for example, cardiac defibrillators, deep brain stimulators, and insulin pumps—offer users the possibility of regaining some control over an increasingly unruly body, the opportunity to become part “cyborg” in service of addressing pressing health needs. We recognize the value and effectiveness of such devices, but call attention to what may be less clear to potential users—that their vulnerabilities may not entirely disappear but instead shift. We explore the kinds of shifting vulnerabilities experienced by people with Parkinson’s disease (PD) who receive therapeutic deep brain stimulators to help control their tremors and other symptoms of PD.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Sven Ove Hansson

Abstract Background With the increased use of implanted medical devices follows a large number of explantations. Implants are removed for a wide range of reasons, including manufacturing defects, recovery making the device unnecessary, battery depletion, availability of new and better models, and patients asking for a removal. Explantation gives rise to a wide range of ethical issues, but the discussion of these problems is scattered over many clinical disciplines. Methods Information from multiple clinical disciplines was synthesized and analysed in order to provide a comprehensive approach to the ethical issues involved in the explantation of medical implants. Results Discussions and recommendations are offered on pre-implantation information about a possible future explantation, risk–benefit assessments of explantation, elective explantations demanded by the patient, explantation of implants inserted for a clinical trial, patient registers, quality assurance, routines for investigating explanted implants, and demands on manufacturers to prioritize increased service time in battery-driven implants and to market fewer but more thoroughly tested models of implants. Conclusion Special emphasis is given to the issue of control or ownership over implants, which underlies many of the ethical problems concerning explantation. It is proposed that just like transplants, implants that fulfil functions normally carried out by biological organs should be counted as supplemented body parts. This means that the patient has a strong and inalienable right to the implant, but upon explantation it loses that status.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jun Jiang ◽  
Jianpeng Xiao ◽  
Dongqing Wang ◽  
Huazhong Cai

Alveolar bone defects (ABDs) were a perennial problem, especially in the aged. Bisphosphonates, especially etidronate sodium (ET), were frequently used in clinical treatment of ABD. However, the oral administration of ET had poor absorption (<1%). Therefore, optimization of a suitable dosage form substituted with ET to locally repair the ABD was a straightforward approach. Polylactide-co-glycolide (PLGA) is a biodegradable material and had been used in locally implanted medical devices. Therefore, an ET-PLGA microcapsule may help local delivery and prolong the activity of healing ABD. In this paper, a preparation method of ET-PLGA microcapsule was optimized by the single-factor investigation and response surface method. Subsequently, the rat ABD model was used to evaluate the enhancement effect of these microcapsules. Finally, the optimum parameters were determined as follows: 40% dichloromethane, 160 mg/mL PLGA, 10% internal aqua/oil phase, 4% PVA, and emulsifying for 10 min. These microcapsules were spherical in shape and fairly monodisperse in a particle size of 27,51 μm (PDI = 0.3), encapsulation rate 96.6%, and drug loading 4.58%. Compared with the ET groups, the total healing volume of ABD in ET-PLGA groups was significantly increased P < 0.05 . ET-PLGA microcapsules significantly enhanced the effect of ET on ABD. This study provided important technical support for the treatment of ABD with bisphosphonates by local administration. This paper has an exploratory significance for the development of water-soluble bioactive components with low bioavailability for ABD.


2021 ◽  
Vol 11 (13) ◽  
pp. 6032
Author(s):  
Iñaki Ortego-Isasa ◽  
Ainhoa Rezola ◽  
Yue Gao ◽  
Xiaodong Chen ◽  
Daniel Valderas

In this work, the optimum homogeneous phantom size for an equivalent whole-body electromagnetic (EM) modeling is calculated. This will enable the simple characterization of plane wave EM attenuation and far-field link budgets in Active Medical Implant (AMI) applications in the core region of the body for Industrial, Scientific, Medical and MedRadio frequency bands. A computational analysis is done to determine the optimum size in which a minimum phantom size reliably represents a whole-body situation for the corresponding frequency of operation, saving computer and laboratory resources. After the definition of a converge criterion, the computed minimum phantom size for subcutaneous applications, 0–10 mm insertion depth, is 355 × 160 × 255 mm3 for 402 MHz and 868 MHz and a cube with a side of 100 mm and 50 mm for 2.45 GHz and 5.8 GHz, respectively. For deep AMI applications, 10–50 mm insertion depth, the dimensions are 355 × 260 × 255 mm3 for 402 MHz and 868 MHz, and a cube with a side of 200 mm and 150 mm for 2.45 GHz and 5.8 GHz, respectively. A significant reduction in both computational and manufacturing resources for phantom development is thereby achieved. The verification of the model is performed by field measurements in phantoms made by aqueous solutions with sugar.


Sign in / Sign up

Export Citation Format

Share Document