scholarly journals Single-cell transcriptome of in vivo SIV-infected rhesus macaque CD4 T cells

2019 ◽  
Vol 5 ◽  
pp. 22
Author(s):  
A. Tokarev ◽  
A. Geretz ◽  
P. Ehrenberg ◽  
M. Roederer ◽  
R. Thomas ◽  
...  
Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-23 ◽  
Author(s):  
Yuping Li ◽  
Xiaoqian Liu ◽  
Xuxiang Liu ◽  
Xiwei Wu ◽  
Alyssa Bouska ◽  
...  

Angioimmunoblastic T-cell lymphoma (AITL), the most frequent subtype of peripheral T-cell lymphoma (PTCL), is a neoplasm with characteristics of mature T follicular helper (TFH) cells. We and others have identified frequent (~75%) inactivating mutations in the TET2 (Ten-Eleven Translocation-2) gene in AITL. TET2 belongs to a 3 member family of TET dioxygenases that catalyze DNA demethylation by oxidation of 5-methyl-cytosine (5-mC) to 5-hydroxymethyl-cytosine (5-hmC) and further oxidative cytosine products. Thus, loss of function (LOF) of TET2 will cause aberrant genome hypermethylation and reduction in 5-hmC. Studies of the variant allele fraction (VAF) of TET2 mutants suggest that this mutation is a founding abnormality in AITL. However, how TET2 loss promotes the development of AITL is still unclear. To study LOF of TET2 in CD4 T-cell lymphomagenesis without the noise generated by other mutations in an established lymphoma, we generated a human TET2 knock-out (KO) CD4 T-cell model using CRISPR/Cas9 technology, which allows us to perform functional genomic studies by directly editing genes at their genomic loci. Whole transcriptome sequencing and single-cell transcriptome sequencing were used to study the cell evolution after KO. We generated multiple TET2 KO primary CD4 T-cell models using two different CRISPR/Cas9 methods. The first approach used the plasmid PX458-a, which expresses green fluorescent protein (GFP) fused Cas9 and guide RNA-a targeting TET2 exon 6, to electroporate CD4 T-cell from healthy donor F25. The second approach used homologous DNA repair (HDR) mediated knock-in (KI) of tandem GFP gene and a SV40 transcription stop signal to terminate TET2 expression at exon 3. Cas9/sgRNA-e RNP complex, along with a long DNA template (about 1.6 kb), was electroporated into CD4 T-cells from two healthy donors, F25 and M40. GFP-positive cells were sorted by FACS after electroporation and were considered to be edited cells. Edited CD4 T-cells were cultured in vitro with 50 U/ml IL-2, and stimulated regularly (every 7~10 days) with 1:1 ratio of anti-CD3/CD28 T activator beads. TET2 KO in these cells was confirmed by qRT-PCR, Sanger sequencing and Western blotting. Compared with wild-type (WT) CD4 T-cells under the same culture conditions, a lower level of 5-hmC in TET2 KO cells was observed, indicating successful editing of TET2. Compared to WT cells, KO cells had a higher growth rate, due to a lower apoptosis rate and a higher proliferation rate, by Annexin V staining, EdU staining, and MTS experiments. The growth of KO cells or WT cells was still dependent on IL-2 and T activator beads stimulation. All batches of KO cells, generated by different guide RNAs or from different donors, showed a much longer life span than WT cells, which usually lived for 3~4 months, but KO cells can keep proliferating longer than one year. We also performed TCR analysis on these cell samples. Both WT and KO cells demonstrated oligoclonality when examined at Day 40 (40D, early stage) and TET2 KO cells showed a dominant clone by Day 90 (90D, late stage). We performed single-cell transcriptome analysis on M40 KO vs. WT cells, at 40D and 90D. KO90D cells had a low TCR diversity with the dominant population representing ~88% of cells (TRAV9-2,TRBV5-1). From single-cell transcriptome analysis, cell clustering profiles were very distinctive in these 4 cell populations analyzed (Figure 1A) and these clusters had unique gene expression profiles (Figure 1B). Cluster 6 was prominent in KO90D but almost absent in WT90D, whereas the reverse was true for clusters 1 and 5. From pathway analysis, KO90D cells showed a higher expression of signatures associated with proliferation, cell cycle and chemokine signaling and lower histidine and tryptophan metabolism signatures. Sanger sequencing showed a 79 bp indel in addition to the GFP KI allele in KO90D cells, demonstrated the homozygous deletion of TET2 on these cells. Similar results were observed in F25 TET2 KO cells by plasmid PX458-a. This indicated the selection of homozygously deleted TET2 cells in long-term culture. However, clonal evolution is highly dynamic and a minor clone in KO40D cells may become the dominant clone in KO90D cells. Comparison of the 5-mC and 5-hmC profiles between KO and WT cells are being conducted to elucidate epigenetic alterations that are associated with the functional alterations and predisposition to AITL lymphomagenesis. Figure Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Fredrik Salmen ◽  
Joachim De Jonghe ◽  
Tomasz S. Kaminski ◽  
Anna Alemany ◽  
Guillermo Parada ◽  
...  

In recent years, single-cell transcriptome sequencing has revolutionized biology, allowing for the unbiased characterization of cellular subpopulations. However, most methods amplify the termini of polyadenylated transcripts capturing only a small fraction of the total cellular transcriptome. This precludes the detection of many long non-coding, short non-coding and non-polyadenylated protein-coding transcripts. Additionally, most workflows do not sequence the full transcript hindering the analysis of alternative splicing. We therefore developed VASA- seq to detect the total transcriptome in single cells. VASA-seq is compatible with both plate- based formats and droplet microfluidics. We applied VASA-seq to over 30,000 single cells in the developing mouse embryo during gastrulation and early organogenesis. The dynamics of the total single-cell transcriptome result in the discovery of novel cell type markers many based on non-coding RNA, an in vivo cell cycle analysis and an improved RNA velocity characterization. Moreover, it provides the first comprehensive analysis of alternative splicing during mammalian development.


2001 ◽  
Vol 98 (19) ◽  
pp. 10805-10810 ◽  
Author(s):  
T. Zell ◽  
A. Khoruts ◽  
E. Ingulli ◽  
J. L. Bonnevier ◽  
D. L. Mueller ◽  
...  

2018 ◽  
Author(s):  
Jianwei Liu ◽  
Na Pan ◽  
Le Sun ◽  
Mengdi Wang ◽  
Junjing Zhang ◽  
...  

ABSTRACTVision formation is classically based on projections from the retinal ganglion cells (RGC) to the lateral geniculate nucleus (LGN) and the primary visual cortex (V1). Although the cellular information of the retina and the LGN has been widely studied, the transcriptome profiles of single neurons with specific functions in V1 still remain unknown. Some neurons in mouse V1 are tuned to light stimulus. To determine the molecular properties of light-stimulated neurons in layer 2/3 of V1, we developed a method of functional in vivo single-cell transcriptome (FIST) analysis that integrates sensory evoked calcium imaging, whole-cell electrophysiological patch-clamp recordings, single-cell mRNA sequencing and three-dimensional morphological characterization in a live mouse, based on a two-photon microscope system. In our study, 58 individual cells from layer 2/3 of V1 were identified as either light-sensitive (LS) or non-light-sensitive (NS) by single-cell light-evoked calcium evaluation and action potential spiking. The contents of every single cell after individual functional tests were aspirated through the patch-clamp pipette for mRNA sequencing. Furthermore, the three-dimensional (3-D) morphological characterizations of the neurons were reconstructed in the live mouse after the whole-cell recordings. Our sequencing results indicated that V1 neurons with high expression of genes related to transmission regulation, such as Rtn4r, Nr4a1, and genes involved in membrane transport, such as Na+/K+ ATPase, NMDA-type glutamatergic receptor, preferentially respond to light stimulation. Our findings demonstrate the ability of FIST analysis to characterize the functional, morphological and transcriptomic properties of a single cell in alive animal, thereby providing precise neuronal information and predicting its network contribution in the brain.


2019 ◽  
Author(s):  
Leilei Zhong ◽  
Lutian Yao ◽  
Robert J. Tower ◽  
Yulong Wei ◽  
Zhen Miao ◽  
...  

AbstractBone marrow mesenchymal lineage cells are a heterogeneous cell population involved in bone homeostasis and diseases such as osteoporosis. While it is long postulated that they originate from mesenchymal stem cells (MSCs), the true identity of MSCs and their in vivo bifurcated differentiation routes into osteoblasts and adipocytes remain poorly understood. Here, by employing single cell transcriptome analysis, we identified MSCs and delineated their bi-lineage differentiation paths in young, adult and aging mice. Among several newly discovered mesenchymal subpopulations, one is a distinct population of adipose-lineage cells that we named marrow environment regulating adipose cells (MERAs). MERAs are non-proliferative, post-progenitor cells that express many mature adipocyte markers but are devoid of lipid droplets. They are abundant in the bone marrow of young mice, acting as pericytes and stromal cells that form numerous connections among themselves and with other cells inside bone, including endothelial cells. Genetic ablation of MERAs disrupts marrow vessel structure, promotes de novo bone formation. Taken together, MERAs represent a unique population of adipose lineage cells that exist only in the bone marrow with critical roles in regulating bone and vessel homeostasis.


2016 ◽  
Vol 94 (6) ◽  
pp. 604-611 ◽  
Author(s):  
Auda A Eltahla ◽  
Simone Rizzetto ◽  
Mehdi R Pirozyan ◽  
Brigid D Betz‐Stablein ◽  
Vanessa Venturi ◽  
...  

Science ◽  
2019 ◽  
Vol 363 (6425) ◽  
pp. eaat7554 ◽  
Author(s):  
Marta Joana Costa Jordão ◽  
Roman Sankowski ◽  
Stefanie M. Brendecke ◽  
Sagar ◽  
Giuseppe Locatelli ◽  
...  

The innate immune cell compartment is highly diverse in the healthy central nervous system (CNS), including parenchymal and non-parenchymal macrophages. However, this complexity is increased in inflammatory settings by the recruitment of circulating myeloid cells. It is unclear which disease-specific myeloid subsets exist and what their transcriptional profiles and dynamics during CNS pathology are. Combining deep single-cell transcriptome analysis, fate mapping, in vivo imaging, clonal analysis, and transgenic mouse lines, we comprehensively characterized unappreciated myeloid subsets in several CNS compartments during neuroinflammation. During inflammation, CNS macrophage subsets undergo self-renewal, and random proliferation shifts toward clonal expansion. Last, functional studies demonstrated that endogenous CNS tissue macrophages are redundant for antigen presentation. Our results highlight myeloid cell diversity and provide insights into the brain’s innate immune system.


2019 ◽  
Author(s):  
Kyungsoo Kim ◽  
Seyeon Park ◽  
Seong Yong Park ◽  
Gamin Kim ◽  
Su Myeong Park ◽  
...  

ABSTRACTBackgroundT cells exhibit heterogeneous functional states in the tumor microenvironment. Immune checkpoint inhibitors (ICIs) can reinvigorate only the stem cell-like progenitor exhausted T cells, which suggests that inhibiting the exhaustion progress will improve the efficacy of immunotherapy. Thus, regulatory factors promoting T-cell exhaustion could serve as potential targets for delaying the process and improving ICI efficacy.MethodsWe analyzed the single-cell transcriptome data derived from human melanoma and non-small cell lung cancer (NSCLC) samples and classified the tumor-infiltrating (TI) CD8+ T-cell population based on PDCD1 (PD-1) levels, i.e. PDCD1-high and PDCD1-low cells. Additionally, we identified differentially expressed genes as candidate factors regulating intra-tumoral T-cell exhaustion. The co-expression of candidate genes with immune checkpoint (IC) molecules in the TI CD8+ T cells was confirmed by single-cell trajectory and flow-cytometry analyses. The loss-of-function effect of the candidate regulator was examined by a cell-based knockdown assay. The clinical effect of the candidate regulator was evaluated based on the overall survival and anti-PD-1 responses.ResultsWe retrieved many known factors for regulating T-cell exhaustion among the differentially expressed genes between PDCD1-high and PDCD1-low subsets of the TI CD8+ T cells in human melanoma and NSCLC. TOX was the only transcription factor (TF) predicted in both tumor types. TOX levels tend to increase as CD8+ T cells become more exhausted. Flow-cytometry analysis revealed a correlation between TOX expression and severity of intra-tumoral T-cell exhaustion. TOX knockdown in the human TI CD8+ T cells resulted in downregulation of PD-1, TIM-3, TIGIT, and CTLA-4, which suggests that TOX promotes intra-tumoral T-cell exhaustion by upregulating IC proteins in cancer. Finally, the TOX level in the TI T cells was found to be highly predictive of overall survival and anti-PD-1 efficacy in melanoma and NSCLC.ConclusionsWe predicted the regulatory factors involved in T-cell exhaustion using single-cell transcriptome profiles of human TI lymphocytes. TOX promoted intra-tumoral CD8+ T-cell exhaustion via upregulation of IC molecules. This suggested that TOX inhibition can potentially impede T-cell exhaustion and improve ICI efficacy. Additionally, TOX expression in the TI T cells can be used for patient stratification during anti-tumor treatments, including anti-PD-1 immunotherapy.


2020 ◽  
Author(s):  
Renpeng Ding ◽  
Shang Liu ◽  
Shanshan Wang ◽  
Huanyi Chen ◽  
Fei Wang ◽  
...  

AbstractPD-L1 expression levels in tumors do not consistently predict cancer patients’ response to PD-(L)1 inhibitors. We therefore evaluated how tumor PD-L1 levels affect the anti-PD-(L)1 efficacy and T cell function. We used MART-1-specific TCR-T cells (TCR-TMART-1) stimulated with MART-127-35 peptide-loaded MEL-526 tumor cells with different proportions of them expressing PD-L1 to perform cellular assays and high-throughput single-cell RNA sequencing. Compared to control T cells, TCR-TMART-1 were more sensitive to exhaustion and secreted lower pro-inflammatory but higher anti-inflammatory cytokines with increasing proportions of PD-L1+ tumor cells. The colocalization of T cells and tumor cells in gene clusters correlated negatively with the proportion of PD-L1+ tumor cells and positively with immune cell cytotoxicity. Moreover, elevated proportion of PD-L1+ tumor cells increased PD-L1 expression and decreased PD-1 expression on T cells and enhanced T cell death. The expression of PD-1 and PD-L1 in T cells and macrophages also correlated positively with COVID-19 severity.


Sign in / Sign up

Export Citation Format

Share Document