scholarly journals Determining the optimal strategy for reopening schools, the impact of test and trace interventions, and the risk of occurrence of a second COVID-19 epidemic wave in the UK: a modelling study

2020 ◽  
Vol 4 (11) ◽  
pp. 817-827 ◽  
Author(s):  
Jasmina Panovska-Griffiths ◽  
Cliff C Kerr ◽  
Robyn M Stuart ◽  
Dina Mistry ◽  
Daniel J Klein ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Po Yang ◽  
Geng Yang ◽  
Jun Qi ◽  
Bin Sheng ◽  
Yun Yang ◽  
...  

AbstractFor controlling recent COVID-19 outbreaks around the world, many countries have implemented suppression and mitigation interventions. This work aims to conduct a feasibility study for accessing the effect of multiple interventions to control the COVID-19 breakouts in the UK and other European countries, accounting for balance of healthcare demand. The model is to infer the impact of mitigation, suppression and multiple rolling interventions for controlling COVID-19 outbreaks in the UK, with two features considered: direct link between exposed and recovered population, and practical healthcare demand by separation of infections. We combined the calibrated model with COVID-19 data in London and non-London regions in the UK during February and April 2020. Our finding suggests that rolling intervention is an optimal strategy to effectively control COVID-19 outbreaks in the UK for balancing healthcare demand and morality ratio. It is better to implement regional based interventions with varied intensities and maintenance periods. We suggest an intervention strategy named as “Besieged and rolling interventions” to the UK that take a consistent suppression in London for 100 days and 3 weeks rolling intervention in other regions. This strategy would reduce the overall infections and deaths of COVID-19 outbreaks, and balance healthcare demand in the UK.


BMJ ◽  
2019 ◽  
pp. l1417 ◽  
Author(s):  
Ben Amies-Cull ◽  
Adam D M Briggs ◽  
Peter Scarborough

AbstractObjectiveTo estimate the impact of the UK government’s sugar reduction programme on child and adult obesity, adult disease burden, and healthcare costs.DesignModelling study.SettingSimulated scenario based on National Diet and Nutrition Survey waves 5 and 6, England.Participants1508 survey respondents were used to model weight change among the population of England aged 4-80 years.Main outcome measuresCalorie change, weight change, and body mass index change were estimated for children and adults. Impact on non-communicable disease incidence, quality adjusted life years, and healthcare costs were estimated for adults. Changes to disease burden were modelled with the PRIMEtime-CE Model, based on the 2014 population in England aged 18-80.ResultsIf the sugar reduction programme was achieved in its entirety and resulted in the planned sugar reduction, then the calorie reduction was estimated to be 25 kcal/day (1 kcal=4.18 kJ=0.00418 MJ) for 4-10 year olds (95% confidence interval 23 to 26), 25 kcal/day (24 to 28) for 11-18 year olds, and 19 kcal/day (17 to 20) for adults. The reduction in obesity could represent 5.5% of the baseline obese population of 4-10 year olds, 2.2% of obese 11-18 year olds, and 5.5% of obese 19-80 year olds. A modelled 51 729 quality adjusted life years (95% uncertainty interval 45 768 to 57 242) were saved over 10 years, including 154 550 (132 623 to 174 604) cases of diabetes and relating to a net healthcare saving of £285.8m (€332.5m, $373.5m; £249.7m to £319.8m).ConclusionsThe UK government’s sugar reduction programme could reduce the burden of obesity and obesity related disease, provided that reductions in sugar levels and portion sizes do not prompt unanticipated changes in eating patterns or product formulation.


BMJ ◽  
2019 ◽  
pp. l4786 ◽  
Author(s):  
Pauline F D Scheelbeek ◽  
Laura Cornelsen ◽  
Theresa M Marteau ◽  
Susan A Jebb ◽  
Richard D Smith

Abstract Objective To estimate the potential impact on body mass index (BMI) and prevalence of obesity of a 20% price increase in high sugar snacks. Design Modelling study. Setting General adult population of the United Kingdom. Participants 36 324 households with data on product level household expenditure from UK Kantar FMCG (fast moving consumer goods) panel for January 2012 to December 2013. Data were used to estimate changes in energy (kcal, 1 kcal=4.18 kJ=0.00418 MJ) purchase associated with a 20% price increase in high sugar snacks. Data for 2544 adults from waves 5 to 8 of the National Diet and Nutrition Survey (2012-16) were used to estimate resulting changes in BMI and prevalence of obesity. Main outcome measures The effect on per person take home energy purchases of a 20% price increase for three categories of high sugar snacks: confectionery (including chocolate), biscuits, and cakes. Health outcomes resulting from the price increase were measured as changes in weight, BMI (not overweight (BMI <25), overweight (BMI ≥25 and <30), and obese (BMI ≥30)), and prevalence of obesity. Results were stratified by household income and BMI. Results For income groups combined, the average reduction in energy consumption for a 20% price increase in high sugar snacks was estimated to be 8.9×10 3 kcal (95% confidence interval −13.1×10 3 to −4.2×10 3 kcal). Using a static weight loss model, BMI was estimated to decrease by 0.53 (95% confidence interval −1.01 to −0.06) on average across all categories and income groups. This change could reduce the UK prevalence of obesity by 2.7 percentage points (95% confidence interval −3.7 to −1.7 percentage points) after one year. The impact of a 20% price increase in high sugar snacks on energy purchase was largest in low income households classified as obese and smallest in high income households classified as not overweight. Conclusions Increasing the price of high sugar snacks by 20% could reduce energy intake, BMI, and prevalence of obesity. This finding was in a UK context and was double that modelled for a similar price increase in sugar sweetened beverages.


2020 ◽  
Author(s):  
Po Yang ◽  
Jun Qi ◽  
Shuhao Zhang ◽  
Xulong wang ◽  
Gaoshan Bi ◽  
...  

SummaryBackgroundRecent outbreak of a novel coronavirus disease 2019 (COVID-19) has led a rapid global spread around the world. For controlling COVID-19 outbreaks, many countries have implemented two non-pharmaceutical interventions: suppression like immediate lock-downs in cities at epicentre of outbreak; or mitigation that slows down but not stopping epidemic for reducing peak healthcare demand. Both interventions have apparent pros and cons; the effectiveness of any one intervention in isolation is limited. We aimed to conduct a feasibility study for robustly estimating the number and distribution of infections, growth of deaths, peaks and lengths of COVID-19 breakouts by taking multiple interventions in London and the UK, accounting for reduction of healthcare demand.MethodsWe developed a model to attempt to infer the impact of mitigation, suppression and multiple rolling interventions for controlling COVID-19 outbreaks in London and the UK. Our model assumed that each intervention has equivalent effect on the reproduction number R across countries and over time; where its intensity was presented by average-number contacts with susceptible individuals as infectious individuals; early immediate intensive intervention led to increased health need and social anxiety. We considered two important features: direct link between Exposed and Recovered population, and practical healthcare demand by separation of infections into mild and critical cases. Our model was fitted and calibrated with data on cases of COVID-19 in Wuhan to estimate how suppression intervention impacted on the number and distribution of infections, growth of deaths over time during January 2020, and April 2020. We combined the calibrated model with data on the cases of COVID-19 in London and non-London regions in the UK during February 2020 and March 2020 to estimate the number and distribution of infections, growth of deaths, and healthcare demand by using multiple interventions.FindingsWe estimated given that multiple interventions with an intensity range from 3 to 15, one optimal strategy was to take suppression with intensity 3 in London from 23rd March for 100 days, and 3 weeks rolling intervention with intensity between 3 and 5 in non-London regions. In this scenario, the total infections and deaths in the UK were limited to 2.43 million and 33.8 thousand; the peak time of healthcare demand was due to the 65th day (April 11th), where it needs hospital beds for 25.3 thousand severe and critical cases. If we took a simultaneous 3 weeks rolling intervention with intensity between 3 and 5 in all regions of the UK, the total infections and deaths increased slightly to 2.69 million and 37 thousand; the peak time of healthcare kept the same at the 65th day, where it needs equivalent hospital beds for severe and critical cases of 25.3 thousand. But if we released high band of rolling intervention intensity to 6 or 8 and simultaneously implemented them in all regions of the UK, the COVID-19 outbreak would not end in 1 year and distribute a multi-modal mode, where the total infections and deaths in the UK possibly reached to 16.2 million and 257 thousand.InterpretationOur results show that taking rolling intervention is probably an optimal strategy to effectively and efficiently control COVID-19 outbreaks in the UK. As large difference of population density and social distancing between London and non-London regions in the UK, it is more appropriate to implement consistent suppression in London for 100 days and rolling intervention in other regions. This strategy would potentially reduce the overall infections and deaths, and delay and reduce peak healthcare demand.Research in contextEvidence before this studySuppression and mitigation are two common interventions for controlling infectious disease outbreaks. Previous works show rapid suppression is able to immediately reduce infections to low levels by eliminating human-to-human transmission, but needs consistent maintenance; mitigation does not interrupt transmission completely and tolerates some increase of infections, but minimises health and economic impacts of viral spread.3 While current planning in many countries is focused on implementing either suppression or mitigation, it is not clear how and when to take which level of interventions for control COVID-19 breakouts to certain country in light of balancing its healthcare demands and economic impacts.Added value of this studyWe used a mathematical model to access the feasibility of multiple intervention to control COVID-19 outbreaks in the UK. Our model distinguished self-recovered populations, infection with mild and critical cases for estimating healthcare demand. It combined available evidence from available data source in Wuhan. We estimated how suppression, mitigation and multiple rolling interventions impact on controlling outbreaks in London and non-London regions of the UK. We provided an evidence verification point that implementing suppression in London and rolling intervention with high intensity in non-London regions is probably an optimal strategy to control COVID-19 breakouts in the UK with minimised deaths and economic impacts.Implications of all the available evidenceThe effectiveness and impact of suppression and mitigation to control outbreaks of COVID-19 depends on intervention intensity and duration, which remain unclear at the present time. Using the current best understanding of this model, implementing consistent suppression in London for 100 days and 3 weeks rolling intervention with intensity between 3 and 5 in other regions potentially limit the total deaths in the UK to 33.8 thousand. Future research on how to quantify and measure intervention activities could improve precision on control estimates.


Epidemiologia ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 271-293
Author(s):  
Gilberto Gonzalez-Parra

The first round of vaccination against coronavirus disease 2019 (COVID-19) began in early December of 2020 in a few countries. There are several vaccines, and each has a different efficacy and mechanism of action. Several countries, for example, the United Kingdom and the USA, have been able to develop consistent vaccination programs where a great percentage of the population has been vaccinated (May 2021). However, in other countries, a low percentage of the population has been vaccinated due to constraints related to vaccine supply and distribution capacity. Countries such as the USA and the UK have implemented different vaccination strategies, and some scholars have been debating the optimal strategy for vaccine campaigns. This problem is complex due to the great number of variables that affect the relevant outcomes. In this article, we study the impact of different vaccination regimens on main health outcomes such as deaths, hospitalizations, and the number of infected. We develop a mathematical model of COVID-19 transmission to focus on this important health policy issue. Thus, we are able to identify the optimal strategy regarding vaccination campaigns. We find that for vaccines with high efficacy (>70%) after the first dose, the optimal strategy is to delay inoculation with the second dose. On the other hand, for a low first dose vaccine efficacy, it is better to use the standard vaccination regimen of 4 weeks between doses. Thus, under the delayed second dose option, a campaign focus on generating a certain immunity in as great a number of people as fast as possible is preferable to having an almost perfect immunity in fewer people first. Therefore, based on these results, we suggest that the UK implemented a better vaccination campaign than that in the USA with regard to time between doses. The results presented here provide scientific guidelines for other countries where vaccination campaigns are just starting, or the percentage of vaccinated people is small.


Author(s):  
C. Claire Thomson

This chapter traces the early history of state-sponsored informational filmmaking in Denmark, emphasising its organisation as a ‘cooperative’ of organisations and government agencies. After an account of the establishment and early development of the agency Dansk Kulturfilm in the 1930s, the chapter considers two of its earliest productions, both process films documenting the manufacture of bricks and meat products. The broader context of documentary in Denmark is fleshed out with an account of the production and reception of Poul Henningsen’s seminal film Danmark (1935), and the international context is accounted for with an overview of the development of state-supported filmmaking in the UK, Italy and Germany. Developments in the funding and output of Dansk Kulturfilm up to World War II are outlined, followed by an account of the impact of the German Occupation of Denmark on domestic informational film. The establishment of the Danish Government Film Committee or Ministeriernes Filmudvalg kick-started aprofessionalisation of state-sponsored filmmaking, and two wartime public information films are briefly analysed as examples of its early output. The chapter concludes with an account of the relations between the Danish Resistance and an emerging generation of documentarists.


Sign in / Sign up

Export Citation Format

Share Document