The Big Mammal Menagerie: Herbivores, Carnivores and Their Ecosystem Impacts

2021 ◽  
pp. 141-246
Keyword(s):  
Author(s):  
Robert N. Spengler

AbstractOver the past decade, niche construction theory (NCT) has been one of the fastest-growing theories or scholarly approaches in the social sciences, especially within archaeology. It was proposed in the biological sciences 25 years ago and is often referred to as a neglected evolutionary mechanism. Given its rapid acceptance by the archaeological community, it is important that scholars consider how it is being applied and look for discrepancies between applications of the concept. Many critical discussions of NCT have already been published, but most of them are in biology journals and may be overlooked by scholars in the social sciences. In this manuscript, my goal is to synthesis the criticisms of NCT, better allowing archaeologists to independently evaluate its usefulness. I focus on the claims of novelty and differences between NCT and other approaches to conceptualizing anthropogenic ecosystem impacts and culture-evolution feedbacks. I argue that the diverse concepts currently included in the wide-reaching purview of NCT are not new, but the terminology is and may be useful to some scholars. If proponents of the concept are able to unify their ideas, it may serve a descriptive function, but given that lack of a testable explanatory mechanism, it does not have a clear heuristic function.


AMBIO ◽  
2021 ◽  
Author(s):  
Sari Repka ◽  
Anne Erkkilä-Välimäki ◽  
Jan Eiof Jonson ◽  
Maximilian Posch ◽  
Janne Törrönen ◽  
...  

AbstractTo assess the value of the environmental benefits of the Sulphur Emission regulation (SECA) that came into force in 2015, changes in depositions of SOx and NOx from ship exhaust gas emissions were modelled and monetized for the Baltic Sea region for the years 2014 and 2016. During this period, the total deposition of SOx in the study area decreased by 7.3%. The decrease in ship-originated SOx deposition from 38 kt to 3.4 kt (by over 88%) was translated into a monetary value for the ecosystem impacts of nearly 130 million USD, according to the EcoValue08 model. This is less than the modelled health benefits, but it is not insignificant. For NOx, there was no decreasing trend. The exceedance of the critical loads of SOx and NOx was also estimated. The effect of Baltic shipping on the exceedance of critical loads of acidification after SECA is very small, but Baltic shipping still has a considerable effect on the exceedance of critical loads for eutrophication.


2017 ◽  
Vol 114 (36) ◽  
pp. 9581-9586 ◽  
Author(s):  
Ryan A. McManamay ◽  
Sujithkumar Surendran Nair ◽  
Christopher R. DeRolph ◽  
Benjamin L. Ruddell ◽  
April M. Morton ◽  
...  

Cities are concentrations of sociopolitical power and prime architects of land transformation, while also serving as consumption hubs of “hard” water and energy infrastructures. These infrastructures extend well outside metropolitan boundaries and impact distal river ecosystems. We used a comprehensive model to quantify the roles of anthropogenic stressors on hydrologic alteration and biodiversity in US streams and isolate the impacts stemming from hard infrastructure developments in cities. Across the contiguous United States, cities’ hard infrastructures have significantly altered at least 7% of streams, which influence habitats for over 60% of North America’s fish, mussel, and crayfish species. Additionally, city infrastructures have contributed to local extinctions in 260 species and currently influence 970 indigenous species, 27% of which are in jeopardy. We find that ecosystem impacts do not scale with city size but are instead proportionate to infrastructure decisions. For example, Atlanta’s impacts by hard infrastructures extend across four major river basins, 12,500 stream km, and contribute to 100 local extinctions of aquatic species. In contrast, Las Vegas, a similar size city, impacts <1,000 stream km, leading to only seven local extinctions. So, cities have local policy choices that can reduce future impacts to regional aquatic ecosystems as they grow. By coordinating policy and communication between hard infrastructure sectors, local city governments and utilities can directly improve environmental quality in a significant fraction of the nation’s streams reaching far beyond their city boundaries.


2020 ◽  
Author(s):  
Diego Ellis-Soto ◽  
Kristy M. Ferraro ◽  
Matteo Rizzuto ◽  
Emily Briggs ◽  
Julia D. Monk ◽  
...  

Ecosystems are open systems connected through spatial flows of energy, matter, and nutrients. Predicting and managing ecosystem interdependence requires a rigorous quantitative understanding of the drivers and vectors that connect ecosystems across spatio-temporal scales. Animals act as such vectors when they transport nutrients across landscapes in the form of excreta, egesta, and their own bodies. Here, we introduce a methodological roadmap that combines movement, foraging, and ecosystem ecology to study the effects of animal-vectored nutrient transport on meta-ecosystems. The meta-ecosystem concept — the notion that ecosystems are connected in space and time by flows of energy, matter, and organisms across boundaries — provides a theoretical framework on which to base our understanding of animal-vectored nutrient transport. However, partly due to its high level of abstraction, there are few empirical tests of meta-ecosystem theory, and while we may label animals as important mediators of ecosystem services, we lack predictive inference of their relative roles and impacts on diverse ecosystems. Recently developed technologies and methods — tracking devices, mechanistic movement models, diet reconstruction techniques and remote sensing — have the potential to facilitate the quantification of animal-vectored nutrient flows and increase the predictive power of meta-ecosystem theory. Understanding the mechanisms by which animals shape ecosystem dynamics may be important for ongoing conservation, rewilding, and restoration initiatives around the world, and for more accurate models of ecosystem nutrient budgets. We provide conceptual examples that show how our proposed integration of methodologies could help investigate ecosystem impacts of animal movement. We conclude by describing practical applications to understanding cross-ecosystem contributions of animals on the move.


Ecohydrology ◽  
2008 ◽  
Vol 1 (2) ◽  
pp. 149-160 ◽  
Author(s):  
Vishal K. Mehta ◽  
Patrick J. Sullivan ◽  
M. Todd Walter ◽  
Jagdish Krishnaswamy ◽  
Stephen D. DeGloria

Rangelands ◽  
2010 ◽  
Vol 32 (1) ◽  
pp. 21-31 ◽  
Author(s):  
Valerie T. Eviner ◽  
Sarah A. Hoskinson ◽  
Christine V. Hawkes

Sign in / Sign up

Export Citation Format

Share Document