scholarly journals A Realizability Interpretation for Classical Arithmetic

2017 ◽  
pp. 57-90
Author(s):  
Jeremy Avigad
Keyword(s):  
Author(s):  
Michael Voskoglou

A Fuzzy Number (FN) is a special kind of FS on the set R of real numbers. The four classical arithmetic operations can be defined on FNs, which play an important role in fuzzy mathematics analogous to the role played by the ordinary numbers in crisp mathematics (Kaufmann & Gupta, 1991). The simplest form of FNs is the Triangular FNs (TFNs), while the Trapezoidal FNs (TpFNs) are straightforward generalizations of the TFNs. In the present work a combination of the COG defuzzification technique and of the TFNs (or TpFNs) is used as an assessment tool. Examples of assessing student problem-solving abilities and basket-ball player skills are also presented illustrating in practice the results obtained. This new fuzzy assessment method is validated by comparing its outcomes in the above examples with the corresponding outcomes of two commonly used assessment methods of the traditional logic, the calculation of the mean values and of the Grade Point Average (GPA) index. Finally, the perspectives of future research on the subject are discussed.


Author(s):  
Michael Voskoglou

A fuzzy number (FN) is a special kind of FS on the set R of real numbers. The four classical arithmetic operations can be defined on FNs, which play an important role in fuzzy mathematics analogous to the role played by the ordinary numbers in crisp mathematics. The simplest form of FNs is the triangular FNs (TFNs), while the trapezoidal FNs (TpFNs) are straightforward generalizations of the TFNs. In the chapter, a combination of the COG defuzzification technique and of the TFNs (or TpFNs) is used as an assessment tool. Examples of assessing student problem-solving abilities and basketball player skills are also presented illustrating in practice the results obtained. This new fuzzy assessment method is validated by comparing its outcomes in the above examples with the corresponding outcomes of two commonly used assessment methods of the traditional logic, the calculation of the mean values, and of the grade point average (GPA) index. Finally, the perspectives of future research on the subject are discussed.


2021 ◽  
pp. 268-311
Author(s):  
Paolo Mancosu ◽  
Sergio Galvan ◽  
Richard Zach

This chapter opens the part of the book that deals with ordinal proof theory. Here the systems of interest are not purely logical ones, but rather formalized versions of mathematical theories, and in particular the first-order version of classical arithmetic built on top of the sequent calculus. Classical arithmetic goes beyond pure logic in that it contains a number of specific axioms for, among other symbols, 0 and the successor function. In particular, it contains the rule of induction, which is the essential rule characterizing the natural numbers. Proving a cut-elimination theorem for this system is hopeless, but something analogous to the cut-elimination theorem can be obtained. Indeed, one can show that every proof of a sequent containing only atomic formulas can be transformed into a proof that only applies the cut rule to atomic formulas. Such proofs, which do not make use of the induction rule and which only concern sequents consisting of atomic formulas, are called simple. It is shown that simple proofs cannot be proofs of the empty sequent, i.e., of a contradiction. The process of transforming the original proof into a simple proof is quite involved and requires the successive elimination, among other things, of “complex” cuts and applications of the rules of induction. The chapter describes in some detail how this transformation works, working through a number of illustrative examples. However, the transformation on its own does not guarantee that the process will eventually terminate in a simple proof.


1981 ◽  
Vol 46 (2) ◽  
pp. 240-248 ◽  
Author(s):  
Daniel Leivant

In classical arithmetic a natural measure for the complexity of relations is provided by the number of quantifier alternations in an equivalent prenex normal form. However, the proof of the Prenex Normal Form Theorem uses the following intuitionistically invalid rules for permuting quantifiers with propositional constants.Each one of these schemas, when added to Intuitionistic (Heyting's) Arithmetic IA, generates full Classical (Peano's) Arithmetic. Schema (3) is of little interest here, since one can obtain a formula intuitionistically equivalent to A ∨ ∀xBx, which is prenex if A and B are:For the two conjuncts on the r.h.s. (1) may be successively applied, since y = 0 is decidable.We shall readily verify that there is no way of similarly going around (1) or (2). This fact calls for counting implication (though not conjunction or disjunction) in measuring in IA the complexity of arithmetic relations. The natural implicational measure for our purpose is the depth of negative nestings of implication, defined as follows. I(F): = 0 if F is atomic; I(F ∧ G) = I(F ∨ G): = max[I(F), I(G)]; I(∀xF) = I(∃xF): = I(F); I(F → G):= max[I(F) + 1, I(G)].


2010 ◽  
Vol 06 (06) ◽  
pp. 1199-1214 ◽  
Author(s):  
DANIEL BACZKOWSKI ◽  
MICHAEL FILASETA ◽  
FLORIAN LUCA ◽  
OGNIAN TRIFONOV

For f one of the classical arithmetic functions d, ϕ and σ, we establish constraints on the quadruples (n, m, a, b) of integers satisfying f(n!)/m! = a/b. In particular, our results imply that as nm tends to infinity, the number of distinct prime divisors dividing the product of the numerator and denominator of the fraction f(n!)/m!, when reduced, tends to infinity.


1995 ◽  
Vol 60 (1) ◽  
pp. 325-337 ◽  
Author(s):  
Thierry Coquand

If it is difficult to give the exact significance of consistency proofs from a classical point of view, in particular the proofs of Gentzen [2, 6], and Novikoff [14], the motivations of these proofs are quite clear intuitionistically. Their significance is then less to give a mere consistency proof than to present an intuitionistic explanation of the notion of classical truth. Gentzen for instance summarizes his proof as follows [6]: “Thus propositions of actualist mathematics seem to have a certain utility, but no sense. The major part of my consistency proof, however, consists precisely in ascribing a finitist sense to actualist propositions.” From this point of view, the main part of both Gentzen's and Novikoff's arguments can be stated as establishing that modus ponens is valid w.r.t. this interpretation ascribing a “finitist sense” to classical propositions.In this paper, we reformulate Gentzen's and Novikoff's “finitist sense” of an arithmetic proposition as a winning strategy for a game associated to it. (To see a proof as a winning strategy has been considered by Lorenzen [10] for intuitionistic logic.) In the light of concurrency theory [7], it is tempting to consider a strategy as an interactive program (which represents thus the “finitist sense” of an arithmetic proposition). We shall show that the validity of modus ponens then gets a quite natural formulation, showing that “internal chatters” between two programs end eventually.We first present Novikoff's notion of regular formulae, that can be seen as an intuitionistic truth definition for classical infinitary propositional calculus. We use this in order to motivate the second part, which presents a game-theoretic interpretation of the notion of regular formulae, and a proof of the admissibility of modus ponens which is based on this interpretation.


1984 ◽  
Vol 49 (1) ◽  
pp. 192-203 ◽  
Author(s):  
Nicolas D. Goodman

Questions about the constructive or effective character of particular arguments arise in several areas of classical mathematics, such as in the theory of recursive functions and in numerical analysis. Some philosophers have advocated Lewis's S4 as the proper logic in which to formalize such epistemic notions. (The fundamental work on this is Hintikka [4].) Recently there have been studies of mathematical theories formalized with S4 as the underlying logic so that these epistemic notions can be expressed. (See Shapiro [7], Myhill [5], and Goodman [2]. The motivation for this work is discussed in Goodman [3].) The present paper is a contribution to the study of the simplest of these theories, namely first-order arithmetic as formalized in S4. Following Shapiro, we call this theory epistemic arithmetic (EA). More specifically, we show that EA is a conservative extension of Hey ting's arithmetic HA (ordinary first-order intuitionistic arithmetic). The question of whether EA is conservative over HA was raised but left open in Shapiro [7].The idea of our proof is as follows. We interpret EA in an infinitary propositional S4, pretty much as Tait, for example, interprets classical arithmetic in his infinitary classical propositional calculus in [8]. We then prove a cut-elimination theorem for this infinitary propositional S4. A suitable version of the cut-elimination theorem can be formalized in HA. For cut-free infinitary proofs, there is a reflection principle provable in HA. That is, we can prove in HA that if there is a cut-free proof of the interpretation of a sentence ϕ then ϕ is true. Combining these results shows that if the interpretation of ϕ is provable in EA, then ϕ is provable in HA.


Sign in / Sign up

Export Citation Format

Share Document