An integrated fault-tolerant control strategy for control surface failure in a fighter aircraft

2021 ◽  
pp. 1-30
Author(s):  
İ. Gümüşboğa ◽  
A. İftar

Abstract Elevator failure may have fatal consequences for fighter aircraft that are unstable due to their high manoeuvrability requirements. Many studies have been conducted in the literature using active and passive fault-tolerant control structures. However, these studies mostly include sophisticated controllers with high computational load that cannot work in real systems. Considering the multi-functionality and broad operational prospects of fighter aircraft, computational load is very important in terms of applicability. In this study, an integrated fault-tolerant control strategy with low computational load is proposed without sacrificing the ability to cope with failures. This control strategy switches between predetermined controllers in the case of failure. One of these controllers is designed to operate in a non-failure condition. This controller is a basic controller that requires very little computational effort. The other controller operates when an asymmetric elevator failure occurs. This controller is a robust fault-tolerant controller that can fly the aircraft safely in case of elevator failure. The switching is decided by a failure detection system. The proposed integrated fault-tolerant control system is verified by non-linear F-16 flight simulations. These simulations show that the proposed method can cope with failures but requires less computational load because it uses a conventional controller in the case of no failure.

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3163
Author(s):  
Chen Huang ◽  
Lidan Zhou ◽  
Zujia Cao ◽  
Gang Yao

Multi-phase motors and generators are regarded with great fault tolerance capability, especially on open-circuit faults. Various mathematics analytical methods are applied for their fault control. In this paper, a fault-tolerant control strategy with asymmetric phase current for the open-circuit faults with arbitrary phases in the six-phase PMSM (six-phase permanent magnetic synchronous motor, 6P-PMSM) system, is proposed for better electrical and dynamical performance of the machine. An innovative mathematical model for PMSM under one to four-phase-open circuit faults are established considering the asymmetry of the machine. Combining with time-varying relations in machines’ working conditions, targeted decoupling transformation matrixes of every kind of open-circuit faults are settled by voltage equations under different faults. Modified control strategy with a connection between the neutral point and the inverter’s DC side is presented, which aims at increasing the system redundancy and reducing the amplitude of phase currents. Besides, improved control loops with two layers are put forward as well, with which the PMSM system acquires fewer harmonics in phase current and smoother electromagnetic torque. Simulation and experimental results of open-circuit faults are provided for verification of the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document