scholarly journals Trends, abrupt shifts and interannual variability of the Arctic Wintertime Seasonal Sea Ice from 1979 to 2019

2020 ◽  
pp. 1-13
Author(s):  
Guanghua Hao ◽  
Jie Su ◽  
Timo Vihma ◽  
Fei Huang

Abstract The Arctic winter seasonal sea ice (WSSI) concentration from 1979 to 2019 is derived from passive microwave data. Based on Empirical Orthogonal Function (EOF) analysis, the WSSI time series includes regionally different trends, abrupt shifts and interannual variations. The time series of the first EOF mode (PC1) mainly represents the WSSI trend, which is characterized by an increase, particularly in the Pacific sector. PC1 confirms two abrupt shifts in WSSI in 1989 and 2007, with a variance of 31%. After 2007, the large-scale atmospheric circulation anomaly shows a strengthened wavenumber 3 structure at high latitudes associated with a mid-tropospheric low-pressure anomaly in central and western Siberia and a high-pressure anomaly in eastern Siberia in summer and autumn. These patterns have promoted the increased transport of moist static energy to the central Arctic and contributed to increased near-surface air temperatures that may enhance ice melting in summer and reduce ice growth in autumn and winter. The changes in ice melt and growth have had opposite effects in the Pacific and Atlantic sectors: WSSI has increased in the Pacific sector due to the replacement of multi-year ice by WSSI, and decreased in the Atlantic sector due to the replacement of WSSI by open water.

2021 ◽  
Vol 13 (12) ◽  
pp. 2283
Author(s):  
Hyangsun Han ◽  
Sungjae Lee ◽  
Hyun-Cheol Kim ◽  
Miae Kim

The Arctic sea ice concentration (SIC) in summer is a key indicator of global climate change and important information for the development of a more economically valuable Northern Sea Route. Passive microwave (PM) sensors have provided information on the SIC since the 1970s by observing the brightness temperature (TB) of sea ice and open water. However, the SIC in the Arctic estimated by operational algorithms for PM observations is very inaccurate in summer because the TB values of sea ice and open water become similar due to atmospheric effects. In this study, we developed a summer SIC retrieval model for the Pacific Arctic Ocean using Advanced Microwave Scanning Radiometer 2 (AMSR2) observations and European Reanalysis Agency-5 (ERA-5) reanalysis fields based on Random Forest (RF) regression. SIC values computed from the ice/water maps generated from the Korean Multi-purpose Satellite-5 synthetic aperture radar images from July to September in 2015–2017 were used as a reference dataset. A total of 24 features including the TB values of AMSR2 channels, the ratios of TB values (the polarization ratio and the spectral gradient ratio (GR)), total columnar water vapor (TCWV), wind speed, air temperature at 2 m and 925 hPa, and the 30-day average of the air temperatures from the ERA-5 were used as the input variables for the RF model. The RF model showed greatly superior performance in retrieving summer SIC values in the Pacific Arctic Ocean to the Bootstrap (BT) and Arctic Radiation and Turbulence Interaction STudy (ARTIST) Sea Ice (ASI) algorithms under various atmospheric conditions. The root mean square error (RMSE) of the RF SIC values was 7.89% compared to the reference SIC values. The BT and ASI SIC values had three times greater values of RMSE (20.19% and 21.39%, respectively) than the RF SIC values. The air temperatures at 2 m and 925 hPa and their 30-day averages, which indicate the ice surface melting conditions, as well as the GR using the vertically polarized channels at 23 GHz and 18 GHz (GR(23V18V)), TCWV, and GR(36V18V), which accounts for atmospheric water content, were identified as the variables that contributed greatly to the RF model. These important variables allowed the RF model to retrieve unbiased and accurate SIC values by taking into account the changes in TB values of sea ice and open water caused by atmospheric effects.


2020 ◽  
Vol 33 (10) ◽  
pp. 4009-4025
Author(s):  
Shuyu Zhang ◽  
Thian Yew Gan ◽  
Andrew B. G. Bush

AbstractUnder global warming, Arctic sea ice has declined significantly in recent decades, with years of extremely low sea ice occurring more frequently. Recent studies suggest that teleconnections with large-scale climate patterns could induce the observed extreme sea ice loss. In this study, a probabilistic analysis of Arctic sea ice was conducted using quantile regression analysis with covariates, including time and climate indices. From temporal trends at quantile levels from 0.01 to 0.99, Arctic sea ice shows statistically significant decreases over all quantile levels, although of different magnitudes at different quantiles. At the representative extreme quantile levels of the 5th and 95th percentiles, the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO), and the Pacific–North American pattern (PNA) have more significant influence on Arctic sea ice than El Niño–Southern Oscillation (ENSO), the Pacific decadal oscillation (PDO), and the Atlantic multidecadal oscillation (AMO). Positive AO as well as positive NAO contribute to low winter sea ice, and a positive PNA contributes to low summer Arctic sea ice. If, in addition to these conditions, there is concurrently positive AMO and PDO, the sea ice decrease is amplified. Teleconnections between Arctic sea ice and the climate patterns were demonstrated through a composite analysis of the climate variables. The anomalously strong anticyclonic circulation during the years of positive AO, NAO, and PNA promotes more sea ice export through Fram Strait, resulting in excessive sea ice loss. The probabilistic analyses of the teleconnections between the Arctic sea ice and climate patterns confirm the crucial role that the climate patterns and their combinations play in overall sea ice reduction, but particularly for the low and high quantiles of sea ice concentration.


2012 ◽  
Vol 9 (3) ◽  
pp. 2001-2038 ◽  
Author(s):  
P. Bourgain ◽  
J. C. Gascard ◽  
J. Shi ◽  
J. Zhao

Abstract. Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during IPY period (2007–2008) to extremely negative values corresponding to strong anticyclonic conditions in 2010. In this context, we investigated the recent large scale evolution of the upper Western Arctic Ocean based on temperature and salinity summertime observations collected during icebreaker campaigns and from Ice-Tethered Platforms (ITP) drifting across the region in 2008 and 2010. Particularly, we focused on (1) the freshwater content which was extensively studied during previous years, (2) the Near Surface Temperature Maximum due to incoming solar radiation and (3) the water masses advected from the Pacific and Atlantic Oceans into the deep Arctic Ocean. The observations revealed a freshwater content change in the Canadian basin during this time period. South of 80° N, the freshwater content increased, while north of 80° N, less freshening occurred in 2010 compared to 2008. This was more likely due to the strong anticyclonicity characteristic of a low AO index mode that enhanced both a wind-generated Ekman pumping in the Beaufort Gyre and a diversion of the Siberian rivers runoff toward the Eurasian basin at the same time. The Near Surface Temperature Maximum due to incoming solar radiation was almost 1 °C colder in the Southern Canada basin (south of 75° N) in 2010 compared to 2008 which contrasted with the positive trend observed during previous years. This was more likely due to higher summer sea ice concentration in 2010 compared to 2008 in that region, and surface albedo feedback reflecting more sun radiation back in space. The Pacific waters were also subjected to strong spatial and temporal variability between 2008 and 2010. In the Canada basin, both Summer and Winter Pacific waters influence increased between 75° N and 80° N. This was more likely due to a strong recirculation within the Beaufort Gyre. In contrast, south of 75° N, the PaW influence decreased indicative of the fact that they were not responsible for the freshening already mentioned, due to other sources. In addition, in the vicinity of the Chukchi Sea, both Summer and Winter Pacific waters were significantly warmer in 2010 than in 2008 as a consequence of a general warming trend of the Pacific waters entering in the deep Arctic Ocean since 2008. Finally, the warm Atlantic water remained relatively stable between 2008 and 2010 in the Canadian basin despite strong atmospheric shift, probably because of large time lag response. Atlantic water variability resulting from the presence of a warm "pulse-like" event in this region since 2005 was still noticeable even if a cooling effect was observed at a rate of 0.015 °C yr−1 between 2008 and 2010 in that region.


2021 ◽  
Author(s):  
Amélie Desmarais ◽  
Bruno Tremblay

AbstractUncertainties in the timing of a seasonal ice cover in the Arctic Ocean depend on model physics and parameterizations, natural variability at decadal timescales and uncertainties in climate scenarios and forcings. We use the Gridded Monthly Sea-Ice Extent and Concentration, 1850 Onward product to assess the simulated decadal variability from the Community Earth System Model – Large Ensemble (CESM-LE) in the Pacific, Eurasian and Atlantic sector of the Arctic where a longer observational record exists. Results show that sea-ice decadal (8-16 years) variability in CESM-LE is in agreement with the observational record in the Pacific sector of the Arctic, underestimated in the Eurasian sector of the Arctic, specifically in the East-Siberian Sea, and slightly overestimated in the Atlantic sector of the Arctic, specifically in the Greenland Sea. Results also show an increase in variability at decadal timescales in the Eurasian and Pacific sectors during the transition to a seasonally ice-free Arctic, in agreement with the observational record although this increase is delayed by 10-20 years. If the current sea-ice retreat in the Arctic continues to be Pacific-centric, results from the CESM-LE suggest that uncertainty in the timing of an ice-free Arctic associated with natural variability is realistic, but that a seasonal ice cover may occur earlier than projected.


Ocean Science ◽  
2013 ◽  
Vol 9 (2) ◽  
pp. 447-460 ◽  
Author(s):  
P. Bourgain ◽  
J. C. Gascard ◽  
J. Shi ◽  
J. Zhao

Abstract. Between 2008 and 2010, the Arctic Oscillation index over Arctic regions shifted from positive values corresponding to more cyclonic conditions prevailing during the 4th International Polar Year (IPY) period (2007–2008) to extremely negative values corresponding to strong anticyclonic conditions in 2010. In this context, we investigated the recent large-scale evolution of the upper western Arctic Ocean, based on temperature and salinity summertime observations collected during icebreaker campaigns and from ice-tethered profilers (ITPs) drifting across the region in 2008 and 2010. Particularly, we focused on (1) the freshwater content which was extensively studied during previous years, (2) the near-surface temperature maximum due to incoming solar radiation, and (3) the water masses advected from the Pacific Ocean into the Arctic Ocean. The observations revealed a freshwater content change in the Canadian Basin during this time period. South of 80° N, the freshwater content increased, while north of 80° N, less freshening occurred in 2010 compared to 2008. This was more likely due to the strong anticyclonicity characteristic of a low AO index mode that enhanced both a wind-generated Ekman pumping in the Beaufort Gyre and a possible diversion of the Siberian River runoff toward the Eurasian Basin at the same time. The near-surface temperature maximum due to incoming solar radiation was almost 1 °C colder in the southern Canada Basin (south of 75° N) in 2010 compared to 2008, which contrasted with the positive trend observed during previous years. This was more likely due to higher summer sea ice concentration in 2010 compared to 2008 in that region, and surface albedo feedback reflecting more sun radiation back in space. The Pacific water (PaW) was also subjected to strong spatial and temporal variability between 2008 and 2010. In the Canada Basin, both summer and winter PaW signatures were stronger between 75° N and 80° N. This was more likely due to a strong recirculation within the Beaufort Gyre. In contrast, south of 75° N, the cooling and warming of the summer and winter PaW, respectively, suggest that either the PaW was less present in 2010 than in 2008 in this region, and/or the PaW was older in 2010 than in 2008. In addition, in the vicinity of the Chukchi Sea, both summer and winter PaW were significantly warmer in 2010 than in 2008, as a consequence of a general warming trend of the PaW entering in the deep Arctic Ocean as of 2008.


2016 ◽  
Author(s):  
Michael A. Goldstein ◽  
Amanda H. Lynch ◽  
Todd E. Arbetter ◽  
Florence Fetterer

Abstract. September open water fraction in the Arctic is analyzed using the satellite era record of ice concentration (1979–2014). This analysis suggests that there is a statistically significant breakpoint (shift in the mean) and increase in the variance around 1988 and another breakpoint around 2007 in the Pacific sector. These structural breaks are robust to the choice of algorithm used for deriving sea ice concentration from satellite data, and are also apparent in other measures of open water, such as operational ice charts and the record of navigable days from Barrow to Prudhoe Bay. Breakpoints in the Atlantic sector record of open water are evident in 1988 and 2007 but more weakly significant. The breakpoints appear to be associated with concomitant shifts in average ice age, and tend to lead change in Arctic circulation regimes. These results support the thesis that Arctic sea ice may have critical points beyond which a return to the previous state is less likely.


2021 ◽  
Author(s):  
Janosch Michaelis ◽  
Christof Lüpkes ◽  
Amelie Schmitt ◽  
Jörg Hartmann

<p><span><span>The polar ocean regions are characterised by a large variety of interactions between sea ice surfaces</span><span>, open water</span><span>, and the atmosphere. Especially between late autumn and spring, leads (open-water channels in sea ice) may play a crucial role within this system: Due to large temperature differences between the surface of leads and the near-surface atmosphere, strong turbulent convective plumes are generated with an enhanced turbulent transport of heat, moisture, and momentum. In consequence, lead-generated convection has a strong impact on the characteristics of the polar atmospheric boundary layer (ABL). </span></span></p><p><span><span>We apply a plume- but non-eddy-resolving, microscale model to study the convection over three different leads, which had been observed during the aircraft campaign STABLE over the Arctic Marginal Sea Ice Zone in March 2013. Model simulations are performed using a local and a non-local turbulence closure. The latter represents a lead-width-dependent approach for </span><span>the </span><span>turbulent fluxes </span><span>based on large eddy simulation </span><span>and it is</span><span> designed for an idealised, </span><span>lead-perpendicular</span><span>, and near-neutral inflow in an ABL of 300m </span><span>thickness</span><span>. </span><span>The observed cases from STABLE are also characterised by lead-perpendicular inflow conditions</span><span>, but the ABL is much shallower than in the ideali</span><span>s</span><span>ed cases and the inflow stratification is </span><span>partly</span><span> (slightly) stable. </span><span>Our main goal is to study the quality of both parametrizations and to evaluate, if the non-local parametrization shows advantages as compared to the local closure.</span></span></p><p><span><span>We show that the basic</span><span> observed features of the lead-generated convection are represented with both closures </span><span>despite some minor differences that will be explained</span><span>. However, the advantages of the non-local closure become clearly obvious by the physically more realistic representation of regions with observed vertical entrainment or where the observations hint at counter-gradient transport. Moreover, we also show that some weaknesses of the simulations can be </span><span>almost </span><span>overcome by introducing two further modifications </span><span>of</span><span> the non-local closure. We consider our results as another important step in the development of atmospheric turbulence parametrizations </span><span>for </span><span>non-eddy-resolving, microscale simulations of</span><span> strongly inhomogeneous convective </span><span>boundary layers</span><span>.</span></span></p>


2021 ◽  
pp. 1-48
Author(s):  
Fengmin Wu ◽  
Wenkai Li ◽  
Peng Zhang ◽  
Wei Li

AbstractSuperimposed on a warming trend, Arctic winter surface air temperature (SAT) exhibits substantial interannual variability, whose underlying mechanisms are unclear, especially regarding the role of sea-ice variations and atmospheric processes. Here, atmospheric reanalysis data and idealized atmospheric model simulations are used to reveal the mechanisms by which sea-ice variations and atmospheric anomalous conditions affect interannual variations in wintertime Arctic SAT. Results show that near-surface interannual warming in the Arctic is accompanied by comparable warming throughout large parts of the Arctic troposphere and large-scale anomalous atmospheric circulation patterns. Within the Arctic, changes in large-scale atmospheric circulations due to internal atmospheric variability explain a substantial fraction of interannual variation in SAT and tropospheric temperatures, which lead to an increase in moisture and downward longwave radiation, with the rest likely coming from sea ice-related and other surface processes. Arctic winter sea-ice loss allows the ocean to release more heat and moisture, which enhances Arctic warming; however, this effect on SAT is confined to the ice-retreat area and has a limited influence on large-scale atmospheric circulations.


2016 ◽  
Vol 29 (19) ◽  
pp. 6993-7008 ◽  
Author(s):  
Patricia DeRepentigny ◽  
L. Bruno Tremblay ◽  
Robert Newton ◽  
Stephanie Pfirman

Abstract The patterns of sea ice retreat in the Arctic Ocean are investigated using two global climate models (GCMs) that have profound differences in their large-scale mean winter atmospheric circulation and sea ice drift patterns. The Community Earth System Model Large Ensemble (CESM-LE) presents a mean sea level pressure pattern that is in general agreement with observations for the late twentieth century. The Community Climate System Model, version 4 (CCSM4), exhibits a low bias in its mean sea level pressure over the Arctic region with a deeper Icelandic low. A dynamical mechanism is presented in which large-scale mean winter atmospheric circulation has significant effect on the following September sea ice extent anomaly by influencing ice divergence in specific areas. A Lagrangian model is used to backtrack the 80°N line from the approximate time of the melt onset to its prior positions throughout the previous winter and quantify the divergence across the Pacific and Eurasian sectors of the Arctic. It is found that CCSM4 simulates more sea ice divergence in the Beaufort and Chukchi Seas and less divergence in the Eurasian seas when compared to CESM-LE, leading to a Pacific-centric sea ice retreat. On the other hand, CESM-LE shows a more symmetrical retreat between the Pacific, Eurasian, and Atlantic sectors of the Arctic. Given that a positive trend in the Arctic Oscillation (AO) index, associated with low sea level pressure anomalies in the Arctic, is a robust feature of GCMs participating in phase 5 of the Coupled Model Intercomparison Project (CMIP5), these results suggest that the sea ice retreat in the Pacific sector could be amplified during the transition to a seasonal ice cover.


2021 ◽  
Author(s):  
Cathy Reader ◽  
Nadja Steiner

Abstract The Arctic Coordinated Regional Downscaling Experiment (Arctic-CORDEX) uses regional climate models (RCMs) to downscale selected Fifth Coupled Model Intercomparison Project (CMIP5) simulations, allowing trend validation and projection on subregional scales. For 1986-2015, the CORDEX seasonal-average near-surface temperature (tas), wind speed (sfcWind), precipitation (pr) and snowfall (prsn) trends are consistent with the ERA5 analysis for the Arctic Ocean regions considered. The projected Representative Concentration Pathway 8.5 (RCP8.5) 2016-2100 subregional annual tas trends range from 0.03 to 0.18 K/year. Projected annual pr and prsn trends have a large inter-model spread centered around approximately 5.0x10−8 mm/s/year and -5.0x10−8 mm/s/year, respectively, while projected sfcWind summer and winter trends range between 0.0 and 0.4 m/s/year. For all variables except prsn, and sometimes total precipitation, the driving general circulation model (GCM) dominates the trends, however there is a tendency for the GCMs to underestimate the sfcWind trends compared to the downscaled simulations. Subtracting the Arctic-Ocean mean from subregional trends reveals a consistent, qualitative anomaly pattern in several variables and seasons characterized by greater-than or average trends in the central and Siberian Arctic Ocean and lesser or average trends in the Atlantic Sector and the Bering Sea, related to summer sea-ice trends. In particular, a strong proportional relationship exists between the summer sea-ice concentration and fall tas and sfcWind trend anomalies. The RCP4.5 annual, multi-model mean trends are 35-55% of the corresponding RCP8.5 trends for most variables and subregions.


Sign in / Sign up

Export Citation Format

Share Document