regional downscaling
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 17)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Cathy Reader ◽  
Nadja Steiner

Abstract The Arctic Coordinated Regional Downscaling Experiment (Arctic-CORDEX) uses regional climate models (RCMs) to downscale selected Fifth Coupled Model Intercomparison Project (CMIP5) simulations, allowing trend validation and projection on subregional scales. For 1986-2015, the CORDEX seasonal-average near-surface temperature (tas), wind speed (sfcWind), precipitation (pr) and snowfall (prsn) trends are consistent with the ERA5 analysis for the Arctic Ocean regions considered. The projected Representative Concentration Pathway 8.5 (RCP8.5) 2016-2100 subregional annual tas trends range from 0.03 to 0.18 K/year. Projected annual pr and prsn trends have a large inter-model spread centered around approximately 5.0x10−8 mm/s/year and -5.0x10−8 mm/s/year, respectively, while projected sfcWind summer and winter trends range between 0.0 and 0.4 m/s/year. For all variables except prsn, and sometimes total precipitation, the driving general circulation model (GCM) dominates the trends, however there is a tendency for the GCMs to underestimate the sfcWind trends compared to the downscaled simulations. Subtracting the Arctic-Ocean mean from subregional trends reveals a consistent, qualitative anomaly pattern in several variables and seasons characterized by greater-than or average trends in the central and Siberian Arctic Ocean and lesser or average trends in the Atlantic Sector and the Bering Sea, related to summer sea-ice trends. In particular, a strong proportional relationship exists between the summer sea-ice concentration and fall tas and sfcWind trend anomalies. The RCP4.5 annual, multi-model mean trends are 35-55% of the corresponding RCP8.5 trends for most variables and subregions.


2021 ◽  
Author(s):  
Felipe Quintero ◽  
Gabriele Villarini ◽  
Andreas F. Prein ◽  
Witold F. Krajewski ◽  
Wei Zhang

Abstract Our study focuses on the hydrologic implications of resolving and modeling atmospheric processes at different spatial scales. Here we use heavy precipitation events from an atmospheric model that was run at different horizontal grid spacings (i.e., 250 m, 500 m, 1 km, 2 km 4 km, and 12 km) and able to resolve different processes. Within an idealized simulation framework, these rainfall events are used as input to an operational distributed hydrologic model to evaluate the sensitivity of the hydrologic response to different forcing grid spacings. We consider the finest scale (i.e., 250 m) as reference, and compute event peak flows and volumes across a wide range of basin sizes. We find that the use of increasingly-coarser inputs leads to changes in the distribution of event peak flows and volumes, with the strongest sensitivity at the smallest catchment sizes. Overall, we find that 4-km rainfall simulations represent a good compromise between computational costs and hydrologic performance, providing basic information for future endeavors geared towards regional downscaling.


Author(s):  
Mayank Suman ◽  
Rajib Maity

Abstract Most of the existing studies on meteorological drought suggest more intense and frequent drought events due to changing climate. However, basin-scale assessment of future agricultural drought is lacking due to many reasons. In this study, the intensity and frequency of future agricultural drought (characterized by the Standardized Soil Moisture Index, SSMI) for 226 sub-basins across India are analyzed, and vulnerable basins are identified. The prediction of the future agricultural drought status is achieved using the wavelet-based drought temporal consequence modeling of meteorological drought and the best performing bias-corrected Coordinated Regional Downscaling Experiment (CORDEX) simulations, selected by Multi-Criteria Decision-Making frameworks. This study reveals a geographically contrasting change in future agricultural drought that indicates more intense agricultural drought in north, north-east, and central India as compared south India. The area under drought is also expected to increase, and about 20 and 50% of the Indian mainland are expected to suffer from extreme (SSMI ≤ −2) and moderate (SSMI ≤ −1) agricultural drought conditions by the end of this century. Sub-basins lying in north and central India are expected to have a longer time under drought conditions. Thus, the findings of this study will be useful for future planning and preparedness against agricultural productivity.


2021 ◽  
Author(s):  
Ulrike Bende-Michl ◽  
Wendy Sharples ◽  
Chantal Donnelly ◽  
Elisabeth Vogel ◽  
Justin Peter ◽  
...  

<p>Australia's large natural hydro-climatic variability has already seen many changes, such as declining rainfall in the southern part of the country. Understanding these shifts and associated impacts on water availability is an important issue for Australia, as water supply is dependent on the generation of surface water resources. Sustainable future urban and agriculture developments will depend on best available knowledge about the risks and vulnerabilities of future water availability.</p><p>To understand those risks and vulnerabilities and to mitigate the impact of a changing climate, Australia's water policy, management and infrastructure decision making needs detailed high-resolution climate and water information. This includes information on multi-decadal timescales from future projections in the context of past climate variabilities. In Australia, currently, hydrologic change information exists in various forms, ranging from multiple regional downscaling efforts, bias-correction methods and different interpretation methods for hydrologic impact assessment – all limiting a national, consistent impact assessment across multiple spatial and temporal scales. These regional downscaling and hydrological impact data collections are either not application-ready or are tailored for specific purposes only, which poses additional barriers to their use across the water and other sectors.</p><p>To overcome these barriers, the Bureau of Meteorology is soon to release a seamless national landscape water service known as the Australian Water Outlook (AWO), combining historical data on water availability with forecast products, as well as hydrological impact projections. This system's core is the Australian Landscape Water Balance model (AWRA-L) modelling hydrologic variables consistently across a large range of spatial and temporal scales. The AWRA-L model is underpinned by substantial scientific development including data assimilation approaches for model calibration as well as model evaluation approaches for past and present time scales. Additionally, consistent downscaling and bias-correction approaches are integrated for the hydrologic projections in the operational framework.</p><p>This presentation will share an overview of the soon to be released Australian Water Outlook seamless service with an emphasis on the Hydrologic Projections part: the methodology, the user centred-design, as well as the development of guidance material containing confidence statements and uncertainty assessments to help decision makers in understanding the service. The presentation will also provide an overview of the tactics we applied to ensure the applicability of the new service including demonstration cases developed in partnership with users.</p>


2020 ◽  
Author(s):  
Arnaud Laurent ◽  
Katja Fennel ◽  
Angela Kuhn

Abstract. Continental shelf regions in the ocean play an important role in the global cycling of carbon and nutrients but their responses to global change are understudied. Global Earth System Models (ESM), as essential tools for building understanding of ocean biogeochemistry, are used extensively and routinely for projections of future climate states; however, their relatively coarse spatial resolution is likely not appropriate for accurately representing the complex patterns of circulation and elemental fluxes on the shelves along ocean margins. Here, we compared 29 ESMs used in the IPCC’s Assessment Rounds (AR) 5 and 6 and a regional biogeochemical model for the northwest North Atlantic (NWA) shelf to assess their ability to reproduce observations of temperature, nitrate, and chlorophyll. The NWA region is biologically productive, influenced by the large-scale Gulf Stream and Labrador Current systems, and particularly sensitive to climate change. Most ESMs compare relatively poorly to observed nitrate and chlorophyll and show differences with observed temperature due to spatial mismatches in their large-scale circulation. Model-simulated nitrate and chlorophyll compare better with available observations in AR6 than in AR5, but none of the models performs equally well for all 3 parameters. The ensemble means of all ESMs, and of the five best performing ESMs, strongly underestimate observed chlorophyll and nitrate. The regional model has a much higher spatial resolution and reproduces the observations significantly better than any of the ESMs. It also simulates reasonably well vertically resolved observations from gliders and bi-monthly ship-based monitoring observations. A ranking of the ESMs suggests that the top 3 models are appropriate as boundary forcing for regional projections of future changes in the NWA region.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3424 ◽  
Author(s):  
Anaïs Machard ◽  
Christian Inard ◽  
Jean-Marie Alessandrini ◽  
Charles Pelé ◽  
Jacques Ribéron

With increasing mean and extreme temperatures due to climate change, it becomes necessary to use—not only future typical conditions—but future heatwaves in building thermal simulations as well. Future typical weather files are widespread, but few researchers have put together methodologies to reproduce future extreme conditions. Furthermore, climate uncertainties need to be considered and it is often difficult due to the lack of data accessibility. In this article, we propose a methodology to re-assemble future weather files—ready-to-use for building simulations—using data from the European Coordinated Regional Downscaling Experiment (EURO-CORDEX) dynamically downscaled regional climate multi-year projections. It is the first time that this database is used to assemble weather files for building simulations because of its recent availability. Two types of future weather files are produced: typical weather years (TWY) and heatwave events (HWE). Combined together, they can be used to fully assess building resilience to overheating in future climate conditions. A case study building in Paris is modelled to compare the impact of the different weather files on the indoor operative temperature of the building. The results confirm that it is better to use multiple types of future weather files, climate models, and or scenarios to fully grasp climate projection uncertainties.


Sign in / Sign up

Export Citation Format

Share Document