scholarly journals The sharp threshold for jigsaw percolation in random graphs

2019 ◽  
Vol 51 (2) ◽  
pp. 378-407
Author(s):  
Oliver Cooley ◽  
Tobias Kapetanopoulos ◽  
Tamás Makai

AbstractWe analyse the jigsaw percolation process, which may be seen as a measure of whether two graphs on the same vertex set are ‘jointly connected’. Bollobás, Riordan, Slivken, and Smith (2017) proved that, when the two graphs are independent binomial random graphs, whether the jigsaw process percolates undergoes a phase transition when the product of the two probabilities is $\Theta({1}/{(n\ln n)})$. We show that this threshold is sharp, and that it lies at ${1}/{(4n\ln n)}$.

2016 ◽  
Vol 27 (07) ◽  
pp. 1650082 ◽  
Author(s):  
Xiao Jia ◽  
Jin-Song Hong ◽  
Ya-Chun Gao ◽  
Hong-Chun Yang ◽  
Chun Yang ◽  
...  

We investigate the percolation phase transitions in both the static and growing networks where the nodes are sampled according to a weighted function with a tunable parameter [Formula: see text]. For the static network, i.e. the number of nodes is constant during the percolation process, the percolation phase transition can evolve from continuous to discontinuous as the value of [Formula: see text] is tuned. Based on the properties of the weighted function, three typical values of [Formula: see text] are analyzed. The model becomes the classical Erdös–Rényi (ER) network model at [Formula: see text]. When [Formula: see text], it is shown that the percolation process generates a weakly discontinuous phase transition where the order parameter exhibits an extremely abrupt transition with a significant jump in large but finite system. For [Formula: see text], the cluster size distribution at the lower pseudo-transition point does not obey the power-law behavior, indicating a strongly discontinuous phase transition. In the case of growing network, in which the collection of nodes is increasing, a smoother continuous phase transition emerges at [Formula: see text], in contrast to the weakly discontinuous phase transition of the static network. At [Formula: see text], on the other hand, probability modulation effect shows that the nature of strongly discontinuous phase transition remains the same with the static network despite the node arrival even in the thermodynamic limit. These percolation properties of the growing networks could provide useful reference for network intervention and control in practical applications in consideration of the increasing size of most actual networks.


2004 ◽  
Vol 36 (03) ◽  
pp. 824-838 ◽  
Author(s):  
B. M. Hambly ◽  
Jonathan Jordan

We consider a sequence of random graphs constructed by a hierarchical procedure. The construction replaces existing edges by pairs of edges in series or parallel with probability p. We investigate the effective resistance across the graphs, first-passage percolation on the graphs and the Cheeger constants of the graphs as the number of edges tends to infinity. In each case we find a phase transition at


2021 ◽  
Vol 9 ◽  
Author(s):  
Matthew Kahle ◽  
Elliot Paquette ◽  
Érika Roldán

Abstract We study a natural model of a random $2$ -dimensional cubical complex which is a subcomplex of an n-dimensional cube, and where every possible square $2$ -face is included independently with probability p. Our main result exhibits a sharp threshold $p=1/2$ for homology vanishing as $n \to \infty $ . This is a $2$ -dimensional analogue of the Burtin and Erdoős–Spencer theorems characterising the connectivity threshold for random graphs on the $1$ -skeleton of the n-dimensional cube. Our main result can also be seen as a cubical counterpart to the Linial–Meshulam theorem for random $2$ -dimensional simplicial complexes. However, the models exhibit strikingly different behaviours. We show that if $p> 1 - \sqrt {1/2} \approx 0.2929$ , then with high probability the fundamental group is a free group with one generator for every maximal $1$ -dimensional face. As a corollary, homology vanishing and simple connectivity have the same threshold, even in the strong ‘hitting time’ sense. This is in contrast with the simplicial case, where the thresholds are far apart. The proof depends on an iterative algorithm for contracting cycles – we show that with high probability, the algorithm rapidly and dramatically simplifies the fundamental group, converging after only a few steps.


10.37236/5327 ◽  
2016 ◽  
Vol 23 (2) ◽  
Author(s):  
Deepak Bal ◽  
Patrick Bennett ◽  
Andrzej Dudek ◽  
Paweł Prałat

Let $G$ be a graph in which each vertex initially has weight 1. In each step, the weight from a vertex $u$ to a neighbouring vertex $v$ can be moved, provided that the weight on $v$ is at least as large as the weight on $u$. The total acquisition number of $G$, denoted by $a_t(G)$, is the minimum possible size of the set of vertices with positive weight at the end of the process.LeSaulnier, Prince, Wenger, West, and Worah asked for the minimum value of $p=p(n)$ such that $a_t(\mathcal{G}(n,p)) = 1$ with high probability, where $\mathcal{G}(n,p)$ is a binomial random graph. We show that $p = \frac{\log_2 n}{n} \approx 1.4427 \ \frac{\log n}{n}$ is a sharp threshold for this property. We also show that almost all trees $T$ satisfy $a_t(T) = \Theta(n)$, confirming a conjecture of West.


10.37236/8846 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Mark Jerrum ◽  
Tamás Makai

We study the joint components in a random 'double graph' that is obtained by superposing red and blue binomial random graphs on $n$~vertices.  A joint component is a maximal set of vertices that supports both a red and a blue spanning tree.  We show that there are critical pairs of red and blue edge densities at which a giant joint component appears.  In contrast to the standard binomial graph model, the phase transition is first order:  the size of the largest joint component jumps from $O(1)$ vertices to $\Theta(n)$ at the critical point.  We connect this phenomenon to the properties of a certain bicoloured branching process. 


Author(s):  
G. R. Grimmett ◽  
C. J. H. McDiarmid

AbstractLet ωn denote a random graph with vertex set {1, 2, …, n}, such that each edge is present with a prescribed probability p, independently of the presence or absence of any other edges. We show that the number of vertices in the largest complete subgraph of ωn is, with probability one,


10.37236/2639 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Béla Bollobás ◽  
Dieter Mitsche ◽  
Paweł Prałat

The metric dimension of a graph $G$ is the minimum number of vertices in a subset $S$ of the vertex set of $G$ such that all other vertices are uniquely determined by their distances to the vertices in $S$. In this paper we investigate the metric dimension of the random graph $G(n,p)$ for a wide range of probabilities $p=p(n)$.


2001 ◽  
Vol Vol. 4 no. 2 ◽  
Author(s):  
C.R. Subramanian

International audience Fix positive integers k and l. Consider a random k-partite graph on n vertices obtained by partitioning the vertex set into V_i, (i=1, \ldots,k) each having size Ω (n) and choosing each possible edge with probability p. Consider any vertex x in any V_i and any vertex y. We show that the expected number of simple paths of even length l between x and y differ significantly depending on whether y belongs to the same V_i (as x does) or not. A similar phenomenon occurs when l is odd. This result holds even when k,l vary slowly with n. This fact has implications to coloring random graphs. The proof is based on establishing bijections between sets of paths.


Sign in / Sign up

Export Citation Format

Share Document