scholarly journals Paths of specified length in random k-partite graphs

2001 ◽  
Vol Vol. 4 no. 2 ◽  
Author(s):  
C.R. Subramanian

International audience Fix positive integers k and l. Consider a random k-partite graph on n vertices obtained by partitioning the vertex set into V_i, (i=1, \ldots,k) each having size Ω (n) and choosing each possible edge with probability p. Consider any vertex x in any V_i and any vertex y. We show that the expected number of simple paths of even length l between x and y differ significantly depending on whether y belongs to the same V_i (as x does) or not. A similar phenomenon occurs when l is odd. This result holds even when k,l vary slowly with n. This fact has implications to coloring random graphs. The proof is based on establishing bijections between sets of paths.

2002 ◽  
Vol Vol. 5 ◽  
Author(s):  
Nikolaos Fountoulakis ◽  
Colin McDiarmid

International audience We present a full analysis of the expected number of 'rigid' 3-colourings of a sparse random graph. This shows that, if the average degree is at least 4.99, then as n → ∞ the expected number of such colourings tends to 0 and so the probability that the graph is 3-colourable tends to 0. (This result is tight, in that with average degree 4.989 the expected number tends to ∞.) This bound appears independently in Kaporis \textitet al. [Kap]. We then give a minor improvement, showing that the probability that the graph is 3-colourable tends to 0 if the average degree is at least 4.989.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Martin Charles Golumbic ◽  
Marina Lipshteyn ◽  
Michal Stern

International audience Let $\mathcal{P}$ be a collection of nontrivial simple paths in a tree $T$. The edge intersection graph of $\mathcal{P}$, denoted by EPT($\mathcal{P}$), has vertex set that corresponds to the members of $\mathcal{P}$, and two vertices are joined by an edge if the corresponding members of $\mathcal{P}$ share a common edge in $T$. An undirected graph $G$ is called an edge intersection graph of paths in a tree, if $G = EPT(\mathcal{P})$ for some $\mathcal{P}$ and $T$. The EPT graphs are useful in network applications. Scheduling undirected calls in a tree or assigning wavelengths to virtual connections in an optical tree network are equivalent to coloring its EPT graph. It is known that recognition and coloring of EPT graphs are NP-complete problems. However, the EPT graphs restricted to host trees of vertex degree 3 are precisely the chordal EPT graphs, and therefore can be colored in polynomial time complexity. We prove a new analogous result that weakly chordal EPT graphs are precisely the EPT graphs with host tree restricted to degree 4. This also implies that the coloring of the edge intersection graph of paths in a degree 4 tree is polynomial. We raise a number of intriguing conjectures regarding related families of graphs.


2014 ◽  
Vol Vol. 16 no. 1 (Graph Theory) ◽  
Author(s):  
Olivier Baudon ◽  
Julien Bensmail ◽  
Rafał Kalinowski ◽  
Antoni Marczyk ◽  
Jakub Przybyło ◽  
...  

Graph Theory International audience A graph G of order n is called arbitrarily partitionable (AP, for short) if, for every sequence τ=(n1,\textellipsis,nk) of positive integers that sum up to n, there exists a partition (V1,\textellipsis,Vk) of the vertex set V(G) such that each set Vi induces a connected subgraph of order ni. A graph G is called AP+1 if, given a vertex u∈V(G) and an index q∈ {1,\textellipsis,k}, such a partition exists with u∈Vq. We consider the Cartesian product of AP graphs. We prove that if G is AP+1 and H is traceable, then the Cartesian product G□ H is AP+1. We also prove that G□H is AP, whenever G and H are AP and the order of one of them is not greater than four.


2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Stefanie Gerke ◽  
Martin Marciniszyn ◽  
Angelika Steger

International audience We prove the existence of many complete graphs in almost all sufficiently dense partitions obtained by an application of Szemerédi's Regularity Lemma. More precisely, we consider the number of complete graphs $K_{\ell}$ on $\ell$ vertices in $\ell$-partite graphs where each partition class consists of $n$ vertices and there is an $\varepsilon$-regular graph on $m$ edges between any two partition classes. We show that for all $\beta > $0, at most a $\beta^m$-fraction of graphs in this family contain less than the expected number of copies of $K_{\ell}$ provided $\varepsilon$ is sufficiently small and $m \geq Cn^{2-1/(\ell-1)}$ for a constant $C > 0$ and $n$ sufficiently large. This result is a counting version of a restricted version of a conjecture by Kohayakawa, Łuczak and Rödl and has several implications for random graphs.


1989 ◽  
Vol 26 (4) ◽  
pp. 807-814 ◽  
Author(s):  
Kyle Siegrist

Consider a sequence of Bernoulli trials between players A and B in which player A wins each trial with probability p∈ [0, 1]. For positive integers n and k with k ≦ n, an (n, k) contest is one in which the first player to win at least n trials and to be ahead of his opponent by at least k trials wins the contest. The (n, 1) contest is the Banach match problem and the (n, n) contest is the gambler's ruin problem. Many real contests (such as the World Series in baseball and the tennis game) have an (n, 1) or an (n, 2) format. The (n, k) contest is formulated in terms of the first-exit time of the graph of a random walk from a certain region of the state-time space. Explicit results are obtained for the probability that player A wins an (n, k) contest and the expected number of trials in an (n, k) contest. Comparisons of (n, k) contests are made in terms of the probability that the stronger player wins and the expected number of trials.


2014 ◽  
Vol Vol. 16 no. 1 (Combinatorics) ◽  
Author(s):  
Toufik Mansour ◽  
Mark Shattuck ◽  
Mark Wilson

Combinatorics International audience A composition is a sequence of positive integers, called parts, having a fixed sum. By an m-congruence succession, we will mean a pair of adjacent parts x and y within a composition such that x=y(modm). Here, we consider the problem of counting the compositions of size n according to the number of m-congruence successions, extending recent results concerning successions on subsets and permutations. A general formula is obtained, which reduces in the limiting case to the known generating function formula for the number of Carlitz compositions. Special attention is paid to the case m=2, where further enumerative results may be obtained by means of combinatorial arguments. Finally, an asymptotic estimate is provided for the number of compositions of size n having no m-congruence successions.


2010 ◽  
Vol DMTCS Proceedings vol. AM,... (Proceedings) ◽  
Author(s):  
Thomas Fernique ◽  
Damien Regnault

International audience This paper introduces a Markov process inspired by the problem of quasicrystal growth. It acts over dimer tilings of the triangular grid by randomly performing local transformations, called $\textit{flips}$, which do not increase the number of identical adjacent tiles (this number can be thought as the tiling energy). Fixed-points of such a process play the role of quasicrystals. We are here interested in the worst-case expected number of flips to converge towards a fixed-point. Numerical experiments suggest a $\Theta (n^2)$ bound, where $n$ is the number of tiles of the tiling. We prove a $O(n^{2.5})$ upper bound and discuss the gap between this bound and the previous one. We also briefly discuss the average-case.


10.37236/771 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Andrzej Dudek ◽  
Vojtěch Rödl

Let $G^{(\infty)}$ be an infinite graph with the vertex set corresponding to the set of positive integers ${\Bbb N}$. Denote by $G^{(l)}$ a subgraph of $G^{(\infty)}$ which is spanned by the vertices $\{1,\dots,l\}$. As a possible extension of Turán's theorem to infinite graphs, in this paper we will examine how large $\liminf_{l\rightarrow \infty} {|E(G^{(l)})|\over l^2}$ can be for an infinite graph $G^{(\infty)}$, which does not contain an increasing path $I_k$ with $k+1$ vertices. We will show that for sufficiently large $k$ there are $I_k$–free infinite graphs with ${1\over 4}+{1\over 200} < \liminf_{l\rightarrow \infty} {|E(G^{(l)})|\over l^2}$. This disproves a conjecture of J. Czipszer, P. Erdős and A. Hajnal. On the other hand, we will show that $\liminf_{l\rightarrow \infty} {|E(G^{(l)})|\over l^2}\le{1\over 3}$ for any $k$ and such $G^{(\infty)}$.


2017 ◽  
Vol 1 (1) ◽  
pp. 44
Author(s):  
Chusnul Noeriansyah Poetri

Suppose a graph G with vertex set V(G) and the edge set E(G) where each vertex V(G) and edge E(G) is given a one - one function and on the mapping functions using positive integers {1,2, … ,


2009 ◽  
Vol DMTCS Proceedings vol. AK,... (Proceedings) ◽  
Author(s):  
Tamás Lengyel

International audience Let $n$ and $k$ be positive integers, $d(k)$ and $\nu_2(k)$ denote the number of ones in the binary representation of $k$ and the highest power of two dividing $k$, respectively. De Wannemacker recently proved for the Stirling numbers of the second kind that $\nu_2(S(2^n,k))=d(k)-1, 1\leq k \leq 2^n$. Here we prove that $\nu_2(S(c2^n,k))=d(k)-1, 1\leq k \leq 2^n$, for any positive integer $c$. We improve and extend this statement in some special cases. For the difference, we obtain lower bounds on $\nu_2(S(c2^{n+1}+u,k)-S(c2^n+u,k))$ for any nonnegative integer $u$, make a conjecture on the exact order and, for $u=0$, prove part of it when $k \leq 6$, or $k \geq 5$ and $d(k) \leq 2$. The proofs rely on congruential identities for power series and polynomials related to the Stirling numbers and Bell polynomials, and some divisibility properties.


Sign in / Sign up

Export Citation Format

Share Document