scholarly journals Advances in anti-spoofing: from the perspective of ASVspoof challenges

Author(s):  
Madhu R. Kamble ◽  
Hardik B. Sailor ◽  
Hemant A. Patil ◽  
Haizhou Li

Abstract In recent years, automatic speaker verification (ASV) is used extensively for voice biometrics. This leads to an increased interest to secure these voice biometric systems for real-world applications. The ASV systems are vulnerable to various kinds of spoofing attacks, namely, synthetic speech (SS), voice conversion (VC), replay, twins, and impersonation. This paper provides the literature review of ASV spoof detection, novel acoustic feature representations, deep learning, end-to-end systems, etc. Furthermore, the paper also summaries previous studies of spoofing attacks with emphasis on SS, VC, and replay along with recent efforts to develop countermeasures for spoof speech detection (SSD) task. The limitations and challenges of SSD task are also presented. While several countermeasures were reported in the literature, they are mostly validated on a particular database, furthermore, their performance is far from perfect. The security of voice biometrics systems against spoofing attacks remains a challenging topic. This paper is based on a tutorial presented at APSIPA Annual Summit and Conference 2017 to serve as a quick start for those interested in the topic.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Clara Borrelli ◽  
Paolo Bestagini ◽  
Fabio Antonacci ◽  
Augusto Sarti ◽  
Stefano Tubaro

AbstractSeveral methods for synthetic audio speech generation have been developed in the literature through the years. With the great technological advances brought by deep learning, many novel synthetic speech techniques achieving incredible realistic results have been recently proposed. As these methods generate convincing fake human voices, they can be used in a malicious way to negatively impact on today’s society (e.g., people impersonation, fake news spreading, opinion formation). For this reason, the ability of detecting whether a speech recording is synthetic or pristine is becoming an urgent necessity. In this work, we develop a synthetic speech detector. This takes as input an audio recording, extracts a series of hand-crafted features motivated by the speech-processing literature, and classify them in either closed-set or open-set. The proposed detector is validated on a publicly available dataset consisting of 17 synthetic speech generation algorithms ranging from old fashioned vocoders to modern deep learning solutions. Results show that the proposed method outperforms recently proposed detectors in the forensics literature.


Author(s):  
Bin Hao ◽  
Xiali Hei

Many healthcare providers integrate biometric recognition/verification schemes into patient identification or other information security systems. While overcoming the disadvantages of using passwords, PINs, and tokens which may be forgotten, or stolen, biometric systems are susceptible to spoofing attacks, or presentation attacks. Liveness detection is an effective mechanism used to defeat a presentation attack. This chapter focuses on voice liveness detection in automatic speaker verification (ASV) systems. The authors explain the spoofing attacks to ASV systems comprising impersonation, voice conversion, speech synthesis, and replay and then present four types of liveness detection (anti-spoofing) methods used to mitigate ASV spoofing attacks: challenge-response-based methods, acoustic feature-based methods, hardware-based methods, and multi-modal biometric-based methods. This chapter analyzes the advantages and disadvantages of each kind of liveness detection method and proposes the possible application of voiceprint-based liveness detection schemes in the insulin pump system.


2020 ◽  
Vol 34 (04) ◽  
pp. 5859-5866
Author(s):  
Nishant Subramani ◽  
Delip Rao

Synthetic speech or “fake speech” which matches personal vocal traits has become better and cheaper due to advances in deep learning-based speech synthesis and voice conversion approaches. This increased accessibility of synthetic speech systems and the growing misuse of them highlights the critical need to build countermeasures. Furthermore, new synthesis models evolve all the time and the efficacy of previously trained detection models on these unseen attack vectors is poor. In this paper, we focus on: 1) How can we build highly accurate, yet parameter and sample-efficient models for fake speech detection? 2) How can we rapidly adapt detection models to new sources of fake speech? We present four parameter-efficient convolutional architectures for fake speech detection with best detection F1 scores of around 97 points on a large dataset of fake and bonafide speech. We show how the fake speech detection task naturally lends itself to a novel multi-task problem further improving F1 scores for a mere 0.5% increase in model parameters. Our multi-task setting also helps in data-sparse situations, commonplace in adversarial settings. We investigate an alternative approach to the data-sparsity problem using transfer learning and show that it is possible to meet purely supervised detection performance for unseen attack vectors with as little as 6.25% of the training data. This is the first known application of transfer learning in adversarial settings for speech. Finally, we show how well our transfer learning approach adapts in an instance-efficient way to new attack vectors using the Real-Time Voice Cloning toolkit. We exceed the purely supervised detection performance (99.18 F1) with as little as 6.25% of the data.


2021 ◽  
Vol 7 (5) ◽  
pp. 89
Author(s):  
George K. Sidiropoulos ◽  
Polixeni Kiratsa ◽  
Petros Chatzipetrou ◽  
George A. Papakostas

This paper aims to provide a brief review of the feature extraction methods applied for finger vein recognition. The presented study is designed in a systematic way in order to bring light to the scientific interest for biometric systems based on finger vein biometric features. The analysis spans over a period of 13 years (from 2008 to 2020). The examined feature extraction algorithms are clustered into five categories and are presented in a qualitative manner by focusing mainly on the techniques applied to represent the features of the finger veins that uniquely prove a human’s identity. In addition, the case of non-handcrafted features learned in a deep learning framework is also examined. The conducted literature analysis revealed the increased interest in finger vein biometric systems as well as the high diversity of different feature extraction methods proposed over the past several years. However, last year this interest shifted to the application of Convolutional Neural Networks following the general trend of applying deep learning models in a range of disciplines. Finally, yet importantly, this work highlights the limitations of the existing feature extraction methods and describes the research actions needed to face the identified challenges.


2021 ◽  
Vol 13 (3) ◽  
pp. 364
Author(s):  
Han Gao ◽  
Jinhui Guo ◽  
Peng Guo ◽  
Xiuwan Chen

Recently, deep learning has become the most innovative trend for a variety of high-spatial-resolution remote sensing imaging applications. However, large-scale land cover classification via traditional convolutional neural networks (CNNs) with sliding windows is computationally expensive and produces coarse results. Additionally, although such supervised learning approaches have performed well, collecting and annotating datasets for every task are extremely laborious, especially for those fully supervised cases where the pixel-level ground-truth labels are dense. In this work, we propose a new object-oriented deep learning framework that leverages residual networks with different depths to learn adjacent feature representations by embedding a multibranch architecture in the deep learning pipeline. The idea is to exploit limited training data at different neighboring scales to make a tradeoff between weak semantics and strong feature representations for operational land cover mapping tasks. We draw from established geographic object-based image analysis (GEOBIA) as an auxiliary module to reduce the computational burden of spatial reasoning and optimize the classification boundaries. We evaluated the proposed approach on two subdecimeter-resolution datasets involving both urban and rural landscapes. It presented better classification accuracy (88.9%) compared to traditional object-based deep learning methods and achieves an excellent inference time (11.3 s/ha).


2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


Sign in / Sign up

Export Citation Format

Share Document