A Determination of the Properties of the Peculiar SNIa 1991T through Models of its Early-time Spectra

1996 ◽  
pp. 277-282
Author(s):  
P. A. Mazzali ◽  
I. J. Danziger
Keyword(s):  
KronoScope ◽  
2022 ◽  
Vol 21 (2) ◽  
pp. 132-156
Author(s):  
Carla Gabrí

Abstract This paper aims at re-evaluating two of Hungarian artist Dóra Mauer’s films, the video work Proportions (1979) and the 16mm film Timing (1973/80). Both films follow a rigid structure. In Proportions, Maurer uses a paper roll to compare her own body measures repeatedly; in Timing, she repeatedly folds a white linen to compare the rhythm of her arm movements. Through her use of paper and the gesture of folding, the two films can be read as references to the very origin of the term format, as coined in early letterpress printing. When the notion of format is understood as a determination of a ratio and, as such, as an indexical reference to given social relationships (Summers, 2003), these films unfold sociocultural and political meanings. The present paper traces this spectrum of meaning through the pointed inclusion of historical discourses surrounding early motion studies, the art scene in socialist Hungary in the 1970s, and early time experiments before the advent of precision clocks.


2008 ◽  
Vol 17 (09) ◽  
pp. 1343-1349 ◽  
Author(s):  
S. D. VERGANI ◽  
D. MALESANI ◽  
E. MOLINARI

We present observations of the early afterglow emission of GRB 060418. Thanks to the simultaneous coverage at optical, X-ray and gamma-ray wavelengths, we can detect and separate the external shock emission (visible in the optical and late X-ray data) and the central engine activity (early X and gamma rays). The two components are clearly distinguished based on temporal and spectral properties. The detection of the afterglow onset (in the optical) allows the determination of the fundamental fireball properties, namely its bulk Lorentz factor and total energy. The early time X-ray flare closely resembles the prompt emission gamma-ray pulses in its temporal profile, being wider at low energies and showing lags between the hard and soft bands. This provides a strong suggestion that X-ray flares are a continuation of the prompt emission.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
James M. Kelly ◽  
Alejandro Amor-Coarasa ◽  
Elizabeth Sweeney ◽  
Justin J. Wilson ◽  
Patrick W. Causey ◽  
...  

Abstract Background As 225Ac-labeled radiopharmaceuticals continue to show promise as targeted alpha therapeutics, there is a growing need to standardize quality control (QC) testing procedures. The determination of radiochemical purity (RCP) is an essential QC test. A significant obstacle to RCP testing is the disruption of the secular equilibrium between actinium-225 and its daughter radionuclides during labeling and QC testing. In order to accelerate translation of actinium-225 targeted alpha therapy, we aimed to determine the earliest time point at which the RCP of an 225Ac-labeled radiopharmaceutical can be accurately quantified. Results Six ligands were conjugated to macrocyclic metal chelators and labeled with actinium-225 under conditions designed to generate diverse incorporation yields. RCP was determined by radio thin layer chromatography (radioTLC) followed by exposure of the TLC plate on a phosphor screen either 0.5, 2, 3.5, 5, 6.5, or 26 h after the plate was developed. The dataset was used to create models for predicting the true RCP for any pre-equilibrium measurement taken at an early time point. The 585 TLC measurements span RCP values of 1.8–99.5%. The statistical model created from these data predicted an independent data set with high accuracy. Predictions made at 0.5 h are more uncertain than predictions made at later time points. This is primarily due to the decay of bismuth-213. A measurement of RCP > 90% at 2 h predicts a true RCP > 97% and guarantees that RCP will exceed 90% after secular equilibrium is reached. These findings were independently validated using NaI(Tl) scintillation counting and high resolution gamma spectroscopy on a smaller set of samples with 10% ≤ RCP ≤ 100%. Conclusions RCP of 225Ac-labeled radiopharmaceuticals can be quantified with acceptable accuracy at least 2 h after radioTLC using various methods of quantifying particle emissions. This time point best balances the need to accurately quantify RCP with the need to safely release the batch as quickly as possible.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
O. N. Shevtsova ◽  
V. K. Shevtsova

The proposed model describes in a quality way the process of tumor-imaging radiopharmaceuticalTc99m-MIBI distribution with taking into account radiopharmaceutical accumulation, elimination, and radioactive decay. The dependencies of concentration versus the time are analyzed. The model can be easily tested by the concentration data of the radioactive pharmaceuticals in the blood measured at early time point and late time point of the scanning, and the obtained data can be used for determination of the washout rate coefficient which is one of the existing oncology diagnostics methods.


Geophysics ◽  
2012 ◽  
Vol 77 (4) ◽  
pp. D105-D112 ◽  
Author(s):  
Teruhiko Hagiwara

The dip and anisotropy of an anisotropic formation were algebraically determined from the transient triaxial induction data without inversion. The time-dependent apparent dip and the apparent anisotropy, algebraically defined from the triaxial transient induction measurements, were applied in a two-layer formation. The apparent dip yielded the true dip in an anisotropic formation, as well as in layered formations, though it yielded the zero dip in an isotropic formation. At early time the apparent anisotropy yielded the true anisotropy of the layer on which the induction tool was located, and at later time the macroscopic anisotropy for a larger volume of investigation. The distance to the layer interface was identified by the transition time when the apparent dip and the apparent anisotropy change the values.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1454-C1454
Author(s):  
Hejing Wang ◽  
Ting Li ◽  
Ling Wang ◽  
Zhao Zhou ◽  
Lei Yuan

Lattice and diffraction are two relating aspects of a crystal. The former reflects the nature of a crystal and the latter describes the basic feature of a crystal. A lattice possesses points and rows two basic characteristics. Great attention has been paid to the points and their distances and directions (angles) they form since the early time of crystallography. Starting from lattice points people have already revealed and found so many regulations in crystals and made great progresses in crystallography. What about the lattice rows? Starting from the geometric relations of reciprocal lattice, we propose six general formulae [1] to describe the relationships between the lattice row distance, the Miller indices h, k, l and the lattice parameters for all crystal systems along any direction. This, like the lattice points, establishes the foundation of the row-indexing, row-refinement of lattice parameters and row-determination of incidence direction theoretically. It is a new method from the lattice row distance to the Miller indices, to the lattice parameters or to the incidence direction. Five steps are optimized for the procedure of "Row-indexing" or "Row-refinement". For example, the procedure of row-indexing is described as 1) measurement of row distance; 2) calculation of row distance; 3) comparison of the measured with the calculated row distances; 4) indexing, and 5) check according to the crystallographic regulations. In respect to diffraction patterns, a series of diffraction spots (points) comprise row(s) and arrange into a series of parallel "lines". When diffraction is strong, diffraction spots are isolated and sharp. However, when diffraction is weak, those spots are obscure or gloomy and often distorted into elongation, asymmetry, deformation, etc. This leads to the outstanding of the rowing "lines" relatively and hence, the row-distance formulae are able to be utilized to structure analysis for those "linear diffraction patterns".


2021 ◽  
Vol 41 (1) ◽  
pp. 148-158
Author(s):  
Dave T. F. Kuo ◽  
Dominic M. Di Toro
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document