Determination of the early time of death by computerized image analysis of DNA degradation: Which is the best quantitative indicator of DNA degradation?

Author(s):  
Lijiang Liu ◽  
Xiji Shu ◽  
Liang Ren ◽  
Hongyan Zhou ◽  
Yan Li ◽  
...  
Author(s):  
T.B. Ball ◽  
W.M. Hess

It has been demonstrated that cross sections of bundles of hair can be effectively studied using image analysis. These studies can help to elucidate morphological differences of hair from one region of the body to another. The purpose of the present investigation was to use image analysis to determine whether morphological differences could be demonstrated between male and female human Caucasian terminal scalp hair.Hair samples were taken from the back of the head from 18 caucasoid males and 13 caucasoid females (Figs. 1-2). Bundles of 50 hairs were processed for cross-sectional examination and then analyzed using Prism Image Analysis software on a Macintosh llci computer. Twenty morphological parameters of size and shape were evaluated for each hair cross-section. The size parameters evaluated were area, convex area, perimeter, convex perimeter, length, breadth, fiber length, width, equivalent diameter, and inscribed radius. The shape parameters considered were formfactor, roundness, convexity, solidity, compactness, aspect ratio, elongation, curl, and fractal dimension.


Author(s):  
William A. Heeschen

Two new morphological measurements based on digital image analysis, CoContinuity and CoContinuity Balance, have been developed and implemented for quantitative measurement of morphology in polymer blends. The morphology of polymer blends varies with phase ratio, composition and processing. A typical morphological evolution for increasing phase ratio of polymer A to polymer B starts with discrete domains of A in a matrix of B (A/B < 1), moves through a cocontinuous distribution of A and B (A/B ≈ 1) and finishes with discrete domains of B in a matrix of A (A/B > 1). For low phase ratios, A is often seen as solid convex particles embedded in the continuous B phase. As the ratio increases, A domains begin to evolve into irregular shapes, though still recognizable as separate domains. Further increase in the phase ratio leads to A domains which extend into and surround the B phase while the B phase simultaneously extends into and surrounds the A phase.


1986 ◽  
Vol 21 (1) ◽  
pp. 130-140 ◽  
Author(s):  
Da-hong Li ◽  
J. J. Ganczarczyk

Abstract The computerized image analysis system has been successfully used for determination and statistical processing of the following geometric characteristics of activated sludge flocs: longest dimension, breadth, equivalent diameter, cross-sectional area, perimeter, elongation, and circularity. These parameters could be effectively and precisely determined by the system applied. In addition, the studied method, as compared to direct microscope observation and photography floc-sizing methods, was found to be more accurate, less time-consuming, and less dependent on the investigators.


1996 ◽  
Vol 21 (4) ◽  
pp. 514-522 ◽  
Author(s):  
I. H. WHITWORTH ◽  
R. A. BROWN ◽  
C. J. DORÉ ◽  
P. ANAND ◽  
C. J. GREEN ◽  
...  

Soluble fibronectin and nerve growth factor (NGF) promote axonal regeneration when placed in silicone tubes. We investigated the ability of orientated fibronectin mats to bind and release bioactive NGF and the possibility of augmenting axonal regeneration following axotomy by using fibronectin conduits impregnated with NGF. The release of NGF was quantified using a fluorometric ELISA and bioactivity confirmed with a neuronal culture bioassay. Immunohistochemical techniques and computerized image analysis were used to assess the rate and volume of axonal and Schwann cell regeneration. The delivery of NGF to the site of injury produced an increase in the rate ( P≤0.007) and volume ( P≤0.004) of both axonal and Schwann cell regeneration when compared to conduits of plain fibronectin. We conclude that the local delivery of NGF by impregnated fibronectin conduits enhances axonal regeneration.


1989 ◽  
Vol 93 (3) ◽  
pp. 358-362 ◽  
Author(s):  
Thomas J. Flotte ◽  
Johanna M. Seddon ◽  
Yuqing Zhang ◽  
Robert J. Glynn ◽  
Kathleen M. Egan ◽  
...  

1994 ◽  
Vol 126 (2) ◽  
pp. 433-443 ◽  
Author(s):  
A McGough ◽  
M Way ◽  
D DeRosier

The three-dimensional structure of actin filaments decorated with the actin-binding domain of chick smooth muscle alpha-actinin (alpha A1-2) has been determined to 21-A resolution. The shape and location of alpha A1-2 was determined by subtracting maps of F-actin from the reconstruction of decorated filaments. alpha A1-2 resembles a bell that measures approximately 38 A at its base and extends 42 A from its base to its tip. In decorated filaments, the base of alpha A1-2 is centered about the outer face of subdomain 2 of actin and contacts subdomain 1 of two neighboring monomers along the long-pitch (two-start) helical strands. Using the atomic model of F-actin (Lorenz, M., D. Popp, and K. C. Holmes. 1993. J. Mol. Biol. 234:826-836.), we have been able to test directly the likelihood that specific actin residues, which have been previously identified by others, interact with alpha A1-2. Our results indicate that residues 86-117 and 350-375 comprise distinct binding sites for alpha-actinin on adjacent actin monomers.


Sign in / Sign up

Export Citation Format

Share Document