Interaction by particle exchange

2018 ◽  
pp. 114-127
Keyword(s):  
2020 ◽  
Vol 8 ◽  
Author(s):  
Christopher Sutton ◽  
Sergey V. Levchenko

In most applications, functional materials operate at finite temperatures and are in contact with a reservoir of atoms or molecules (gas, liquid, or solid). In order to understand the properties of materials at realistic conditions, statistical effects associated with configurational sampling and particle exchange at finite temperatures must consequently be taken into account. In this contribution, we discuss the main concepts behind equilibrium statistical mechanics. We demonstrate how these concepts can be used to predict the behavior of materials at realistic temperatures and pressures within the framework of atomistic thermodynamics. We also introduce and discuss methods for calculating phase diagrams of bulk materials and surfaces as well as point defect concentrations. In particular, we describe approaches for calculating the configurational density of states, which requires the evaluation of the energies of a large number of configurations. The cluster expansion method is therefore also discussed as a numerically efficient approach for evaluating these energies.


It is shown that the first Bom approximation for the exchange of two uncorrelated electrons should vanish. A formalism for the T matrix is presented which has this property. The high-energy result for the two-electron exchange cross-section previously calculated in first Born approximation behaves like E -7 . This result is in error due to a lack of orthogonality of initial and final states. When this is corrected the result for uncorrelated electrons has an energy dependence E -11 . The introduction of correlation gives terms behaving like E -10 which cannot be calculated unam biguously.


1994 ◽  
Vol 24 (6) ◽  
pp. 1399-1418 ◽  
Author(s):  
Amy S. Bower ◽  
M. Susan Lozier

1992 ◽  
Vol 45 (3) ◽  
pp. 771-776 ◽  
Author(s):  
Y. A. Coutinho ◽  
J. A. Martins Simões ◽  
M. C. Pommot Maia

2020 ◽  
Vol 77 (5) ◽  
pp. 1602-1616 ◽  
Author(s):  
Saskia Rühl ◽  
Charlie Thompson ◽  
Ana M Queirós ◽  
Stephen Widdicombe

Abstract Exchanges of solutes and solids between the sea floor and water column are a vital component of ecosystem functioning in marine habitats around the globe. This review explores particle and solute exchange processes, the different mechanisms through which they interact at the ecosystem level, as well as their interdependencies. Solute and particle exchange processes are highly dependent on the characteristics of the environment within which they takes place. Exchange is driven directly by a number of factors, such as currents, granulometry, nutrient, and matter inputs, as well as living organisms. In turn, the occurrence of exchanges can influence adjacent environments and organisms. Major gaps in the present knowledge include the temporal and spatial variation in many of the processes driving benthic/pelagic exchange processes and the variability in the relative importance of individual processes caused by this variation. Furthermore, the accurate assessment of some anthropogenic impacts is deemed questionable due to a lack of baseline data and long-term effects of anthropogenic actions are often unknown. It is suggested that future research should be transdisciplinary and at ecosystem level wherever possible and that baseline surveys should be implemented and long-term observatories established to fill the current knowledge gaps.


2006 ◽  
Vol 24 (11) ◽  
pp. 3131-3137 ◽  
Author(s):  
X.-Z. Zhou ◽  
T. A. Fritz ◽  
Q.-G. Zong ◽  
Z. Y. Pu ◽  
Y.-Q. Hao ◽  
...  

Abstract. The study focuses on a single particle dynamics in the cusp region. The topology of the cusp region in terms of magnetic field iso-B contours has been studied using the Tsyganenko 96 model (T96) as an example, to show the importance of an off-equatorial minimum on particle trapping. We carry out test particle simulations to demonstrate the bounce and drift motion. The "cusp trapping limit" concept is introduced to reflect the particle motion in the high latitude magnetospheric region. The spatial distribution of the "cusp trapping limit" shows that only those particles with near 90° pitch-angles can be trapped and drift around the cusp. Those with smaller pitch angles may be partly trapped in the iso-B contours, however, they will eventually escape along one of the magnetic field lines. There exist both open field lines and closed ones within the same drift orbit, indicating two possible destinations of these particles: those particles being lost along open field lines will be connected to the surface of the magnetopause and the solar wind, while those along closed ones will enter the equatorial radiation belt. Thus, it is believed that the cusp region can provide a window for particle exchange between these two regions. Some of the factors, such as dipole tilt angle, magnetospheric convection, IMF and the Birkeland current system, may influence the cusp's trapping capability and therefore affect the particle exchanging mechanism. Their roles are examined by both the analysis of cusp magnetic topology and test particle simulations.


1981 ◽  
Vol 367 (2) ◽  
pp. 197-214 ◽  
Author(s):  
F.D. Santos ◽  
P.C. Colby

Sign in / Sign up

Export Citation Format

Share Document