scholarly journals GP.01 Quantification of computational geometric congruence in surface-based registration for spinal intra-operative three-dimensional navigation

Author(s):  
D Guha ◽  
R Jakubovic ◽  
VX Yang

Background: Computer-assisted navigation (CAN) may guide spinal instrumentation, and requires alignment of patient anatomy to imaging. Iterative-Closest-Point algorithms register anatomical and imaging datasets, which may fail in the presence of significant geometric congruence leading to inaccurate navigation. We computationally quantify geometric congruence in posterior spinal exposures, and identify predictors of potential navigation inaccuracy. Methods: Midline posterior exposures were performed from C1-S1 in four human cadavers. An optically-based CAN generated surface maps of the posterior elements at each level. Maps were reconstructed to include bilateral hemilamina, or unilateral hemilamina with/without the base of the spinous process. Maps were fitted to symmetrical geometries (cylindrical/spherical/planar) using computational modelling, and the degree of model fit quantified. Results: Increased cylindrical/spherical/planar symmetry was seen in the subaxial cervical spine relative to the high-cervical and thoracolumbar spine (p<0.001). Inclusion of the base of the spinous process decreased symmetry independent of spinal level (p<0.001). Registration with bilateral vs. unilateral hemilamina did not significantly reduce geometric symmetry. Conclusions: Geometric congruence is most evident at C1 and the subaxial cervical spine, warranting greater vigilance in navigation accuracy verification. At all levels, inclusion of the base of the spinous process in unilateral registration decreases the likelihood of geometric symmetry and navigation error.

Author(s):  
Daipayan Guha ◽  
Ali Moghaddamjou ◽  
Zaneen H. Jiwani ◽  
Naif M. Alotaibi ◽  
Michael G. Fehlings ◽  
...  

AbstractBackgroundComputer-assisted navigation (CAN) improves the accuracy of spinal instrumentation in vertebral fractures and degenerative spine disease; however, it is not widely adopted because of lack of training, high capital costs, workflow hindrances, and accuracy concerns. We characterize shifts in the use of spinal CAN over time and across disciplines in a single-payer health system, and assess the impact of intra-operative CAN on trainee proficiency across Canada.MethodsA prospectively maintained Ontario database of patients undergoing spinal instrumentation from 2005 to 2014 was reviewed retrospectively. Data were collected on treated pathology, spine region, surgical approach, institution type, and surgeon specialty. Trainee proficiency with CAN was assessed using an electronic questionnaire distributed across 15 Canadian orthopedic surgical and neurosurgical programs.ResultsIn our provincial cohort, 16.8% of instrumented fusions were CAN-guided. Navigation was used more frequently in academic institutions (15.9% vs. 12.3%, p<0.001) and by neurosurgeons than orthopedic surgeons (21.0% vs. 12.4%, p<0.001). Of residents and fellows 34.1% were fully comfortable using spinal CAN, greater for neurosurgical than orthopedic surgical trainees (48.1% vs. 11.8%, p=0.008). The use of CAN increased self-reported proficiency in thoracic instrumentation for all trainees by 11.0% (p=0.036), and in atlantoaxial instrumentation for orthopedic trainees by 18.0% (p=0.014).ConclusionsSpinal CAN is used most frequently by neurosurgeons and in academic centers. Most spine surgical trainees are not fully comfortable with the use of CAN, but report an increase in technical comfort with CAN guidance particularly for thoracic instrumentation. Increased education in spinal CAN for trainees, particularly at the fellowship stage and, specifically, for orthopedic surgery, may improve adoption.


2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
Takahiro Otsudo ◽  
Kiyokazu Akasaka ◽  
Hiroshi Hattori ◽  
Yuki Hasebe ◽  
Akihiro Tamura ◽  
...  

Objective. The study used a 3D digitizer to determine three-dimensional motion analysis of the 2nd cervical (C2) spinous process at end range cervical rotation with the scapula in different positions. Methods. 30 healthy adults participated in this study. Different scapula positions were adopted bilaterally and positioned passively at normal resting, depression, adduction, and abduction. Under each scapula position, bilateral end range cervical rotation and displacement of the C2 spinous process were analyzed by a 3D digitizer. Results. Displacement of the C2 spinous process relative to the occiput was significantly correlated with range of cervical rotation under all scapular positions (p<0.05). However, there were no significant differences between end range cervical rotation and displacement of the C2 spinous process relative to the occiput in any scapular position. Conclusion. These results suggest that measurement of upper cervical mobility using the 3D digitizer is a reliable method that holds promise in the evaluation of people with cervical spine disorders.


2020 ◽  
Vol 32 (6) ◽  
pp. 891-899 ◽  
Author(s):  
Jonathan J. Rasouli ◽  
Brooke T. Kennamer ◽  
Frank M. Moore ◽  
Alfred Steinberger ◽  
Kevin C. Yao ◽  
...  

OBJECTIVEThe C7 vertebral body is morphometrically unique; it represents the transition from the subaxial cervical spine to the upper thoracic spine. It has larger pedicles but relatively small lateral masses compared to other levels of the subaxial cervical spine. Although the biomechanical properties of C7 pedicle screws are superior to those of lateral mass screws, they are rarely placed due to increased risk of neurological injury. Although pedicle screw stimulation has been shown to be safe and effective in determining satisfactory screw placement in the thoracolumbar spine, there are few studies determining its utility in the cervical spine. Thus, the purpose of this study was to determine the feasibility, clinical reliability, and threshold characteristics of intraoperative evoked electromyographic (EMG) stimulation in determining satisfactory pedicle screw placement at C7.METHODSThe authors retrospectively reviewed a prospectively collected data set. All adult patients who underwent posterior cervical decompression and fusion with placement of C7 pedicle screws at the authors’ institution between January 2015 and March 2019 were identified. Demographic, clinical, neurophysiological, operative, and radiographic data were gathered. All patients underwent postoperative CT scanning, and the position of C7 pedicle screws was compared to intraoperative neurophysiological data.RESULTSFifty-one consecutive C7 pedicle screws were stimulated and recorded intraoperatively in 25 consecutive patients. Based on EMG findings, 1 patient underwent intraoperative repositioning of a C7 pedicle screw, and 1 underwent removal of a C7 pedicle screw. CT scans demonstrated ideal placement of the C7 pedicle screw in 40 of 43 instances in which EMG stimulation thresholds were > 15 mA. In the remaining 3 cases the trajectories were suboptimal but safe. When the screw stimulation thresholds were between 11 and 15 mA, 5 of 6 screws were suboptimal but safe, and in 1 instance was potentially dangerous. In instances in which the screw stimulated at thresholds ≤ 10 mA, all trajectories were potentially dangerous with neural compression.CONCLUSIONSIdeal C7 pedicle screw position strongly correlated with EMG stimulation thresholds > 15 mA. In instances, in which the screw stimulates at values between 11 and 15 mA, screw trajectory exploration is recommended. Screws with thresholds ≤ 10 mA should always be explored, and possibly repositioned or removed. In conjunction with other techniques, EMG threshold testing is a useful and safe modality in determining appropriate C7 pedicle screw placement.


2019 ◽  
Vol 9 (1_suppl) ◽  
pp. 77S-88S ◽  
Author(s):  
Srikanth N. Divi ◽  
Gregory D. Schroeder ◽  
F. Cumhur Oner ◽  
Frank Kandziora ◽  
Klaus J. Schnake ◽  
...  

Study Design: Narrative review. Objectives: To describe the current AOSpine Trauma Classification system for spinal trauma and highlight the value of patient-specific modifiers for facilitating communication and nuances in treatment. Methods: The classification for spine trauma previously developed by The AOSpine Knowledge Forum is reviewed and the importance of case modifiers in this system is discussed. Results: A successful classification system facilitates communication and agreement between physicians while also determining injury severity and provides guidance on prognosis and treatment. As each injury may be unique among different patients, the importance of considering patient-specific characteristics is highlighted in this review. In the current AOSpine Trauma Classification, the spinal column is divided into 4 regions: the upper cervical spine (C0-C2), subaxial cervical spine (C3-C7), thoracolumbar spine (T1-L5), and the sacral spine (S1-S5, including coccyx). Each region is classified according to a hierarchical system with increasing levels of injury or instability and represents the morphology of the injury, neurologic status, and clinical modifiers. Specifically, these clinical modifiers are denoted starting with M followed by a number. They describe unique conditions that may change treatment approach such as the presence of significant soft tissue damage, uncertainty about posterior tension band injury, or the presence of a critical disc herniation in a cervical bilateral facet dislocation. These characteristics are described in detail for each spinal region. Conclusions: Patient-specific modifiers in the AOSpine Trauma Classification highlight unique clinical characteristics for each injury and facilitate communication and treatment between surgeons.


2008 ◽  
Vol 18 (2) ◽  
pp. 276-281 ◽  
Author(s):  
Ioannis D. Gelalis ◽  
Louis E. DeFrate ◽  
Kosmas S. Stafilas ◽  
Emilios E. Pakos ◽  
James D. Kang ◽  
...  

2001 ◽  
Vol 10 (4) ◽  
pp. 1-8 ◽  
Author(s):  
James K. Liu ◽  
Kaushik Das

The biomechanical stability of the subaxial cervical spine (C3–7) can be compromised by numerous pathological processes, and the restoration of stability may ultimately require fusion and placement of rigid internal fixation devices. A posterior fusion and stabilization procedure is often used to treat cervical instability secondary to traumatic injury, rheumatoid arthritis, ankylosing spondylitis, neoplastic disease, infections, and previous laminectomy. Numerous techniques and advances in spinal instrumentation have evolved over the last 30 years. The authors review the indications and the various methods for stabilizing and fusing the subaxial cervical spine via posterior approaches.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaojian Liu ◽  
Hairun Liu ◽  
Yushan Wang

AbstractIn this study, a new percutaneous multi-function pedicle locator was designed for personalized three-dimensional positioning of a pedicle in minimally invasive spine surgery (MISS) without computer-assisted navigation technology. The proposed locator was used in a number of patients during MISS, and its advantages were analyzed. Based on the position of a pedicle determined by computed tomography (CT) and fluoroscopic images of a patient, 6 lines and 2 distances were used to determine the puncture point of a pedicle screw on skin, while 2 angles were used to indicate the direction of insertion of a pedicle guide needle from the patient's body surface. The results of the proposed locator were compared with those of the conventional freehand technique in MISS. The potential benefits of using the locator included enhanced surgical accuracy, reduced operation time, alleviation of the harmful intra-operative radiation exposure, lower costs, and shortened learning curve for young orthopedists.


2021 ◽  
Vol 21 (Supplement_1) ◽  
pp. S48-S56
Author(s):  
Siri Sahib S Khalsa ◽  
Praveen V Mummaneni ◽  
Dean Chou ◽  
Paul Park

Abstract Enabling technologies include surgical planning software, computer-assisted navigation, intraoperative three-dimensional (3D) imaging, and robotic systems. Presently, these technologies are in various stages of refinement. Spinal robots in particular are currently limited to the positioning of an alignment guide for pedicle screw placement. Current generation spinal robots, therefore, play a more limited role in spinal surgery. In contrast to spinal robots, intraoperative imaging technology has been developed further, to a stage that allows accurate 3D spinal image acquisition that can be readily utilized for spinal navigation. The integration of these various technologies has the potential to maximize the safety, consistency, reliability, and efficacy of surgical procedures. To that end, the trend for manufacturers is to incorporate various enabling technologies into the spinal robotic systems. In the near-term, it is expected that integration of more advanced planning software and navigation will result in wider applicability and value. In the long-term, there are a variety of enabling technologies such as augmented reality that may be a component of spinal robots. This article reviews the features of currently available spinal robots and discusses the likely future advancements of robotic platforms in the near- and long-term.


Sign in / Sign up

Export Citation Format

Share Document