scholarly journals Motor neuron disease presenting with fetal akinesia

Author(s):  
P. Shannon ◽  
D. Chitayat ◽  
K. Chong ◽  
C. Dunham ◽  
C. Fallet-Bianco

By contrast to infantile spinal muscular atrophy, which usually links to deletions in the SMN genes, fetal onset motor neuron disease is poorly reported. We collected a series of twelve cases of fetal arthrogryposis (16-31 weeks gestational age) with fetal motor neuron disease and excluded infectious diseases, lysosomal storage disease and neuroaxonal dystrophy. Of these twelve, 3 were thought to be ischemic in nature with microvascular alterations and systemic or central nervous system ischemic injury. The remaining 9 all displayed marked reduction in anterior horn motor neurons. Of these 9, four demonstrated mineralised neurons, four demonstrated either neuronal loss or cavitation in the globus pallidus, and in two, degenerating neurons were detectable in the brainstem or globus pallidus. Specific sequencing of SMN1 was performed in 6 of 9 and was reported as normal. Whole exome sequencing was performed in 4 without definitive diagnosis. We conclude that fetal motor neuron disease can be distinguished from ischemic injury, is morphologically heterogeneous, may affect the globus pallidus and is rarely linked to SMN1 mutations.

Author(s):  
Martin R. Turner

Motor neuron disease (MND) is characterized by progressive muscular weakness due to simultaneous degeneration of lower and upper motor neurons (L/UMNs). Involvement of LMNs, arising from the anterior horns of the spinal cord and brainstem, leads to secondary wasting as a result of muscle denervation. Involvement of the UMNs of the motor cortex and corticospinal tract results in spasticity. In ~85% of cases, there is clear clinical involvement of both, and the condition is termed ‘amyotrophic lateral sclerosis’ (ALS; a term often used synonymously with MND). In ~13% of cases, there may be only LMN signs apparent, in which case the condition is termed ‘progressive muscular atrophy’, although such cases have a natural history that is to largely identical to that of ALS. In a very small group of patients (~2%), there are only UMN signs for at least the first 4 years, in which case the condition is termed ‘primary lateral sclerosis’; such cases have a uniformly slower progression. There is clinical, neuropathological, and genetic overlap between MND and some forms of frontotemporal dementia.


2002 ◽  
Vol 88 (6) ◽  
pp. 3293-3304 ◽  
Author(s):  
Mark M. Rich ◽  
Robert. F. Waldeck ◽  
Linda C. Cork ◽  
Rita J. Balice-Gordon ◽  
Robert E. W. Fyffe ◽  
...  

Hereditary canine spinal muscular atrophy (HCSMA) is an autosomal dominant degenerative disorder of motor neurons. In homozygous animals, motor units produce decreased force output and fail during repetitive activity. Previous studies suggest that decreased efficacy of neuromuscular transmission underlies these abnormalities. To examine this, we recorded muscle fiber endplate currents (EPCs) and found reduced amplitudes and increased failures during nerve stimulation in homozygotes compared with wild-type controls. Comparison of EPC amplitudes with muscle fiber current thresholds indicate that many EPCs from homozygotes fall below threshold for activating muscle fibers but can be raised above threshold following potentiation. To determine whether axonal abnormalities might play a role in causing motor unit dysfunction, we examined the postnatal maturation of axonal conduction velocity in relation to the appearance of tetanic failure. We also examined intracellularly labeled motor neurons for evidence of axonal neurofilament accumulations, which are found in many instances of motor neuron disease including HCSMA. Despite the appearance of tetanic failure between 90 and 120 days, average motor axon conduction velocity increased with age in homozygotes and achieved adult levels. Normal correlations between motor neuron properties (including conduction velocity) and motor unit properties were also observed. Labeled proximal motor axons of several motor neurons that supplied failing motor units exhibited little or no evidence of axonal swellings. We conclude that decreased release of transmitter from motor terminals underlies motor unit dysfunction in HCSMA and that the mechanisms determining the maturation of axonal conduction velocity and the pattern of correlation between motor neuron and motor unit properties do not contribute to the appearance or evolution of motor unit dysfunction.


Author(s):  
Linda C. Cork

ABSTRACT:Motor neuron diseases selectively produce degeneration and death of motor neurons; the pathogenesis of these disorders and the specificity for this population of neurons are unknown. Hereditary Canine Spinal Muscular Atrophy produces a lower motor neuron disease which is clinically and pathologically similar to human motor neuron disease: motor neurons dysfunction and degenerate. The canine model provides an opportunity to investigate early stages of disease when there are viable motor neurons still present and might be responsive to a variety of therapeutic interventions. The canine disease, like the human disease, is inherited as an autosomal dominant. The extensive canine pedigree of more than 200 characterized individuals permits genetic analysis using syntenic linkage techniques which may identify a marker for the canine trait and provide insights into homologous regions for study in human kindreds.


Author(s):  
Nimish Thakore ◽  
Erik P Pioro

Disorders of lower motor neurons (LMNs, or anterior horn cells) and upper motor neurons (UMNs), jointly termed motor neuron disorders (MNDs), are diverse and numerous. The prototypical MND, namely amyotrophic lateral sclerosis (ALS), a relentlessly progressive lethal disorder of adults, is the subject of another section and will not be discussed further here. Other MNDs include spinal muscular atrophy (SMA), of which there are four types: Kennedy’s disease, Brown-Violetto-Van Laere, and Fazio-Londe syndromes, lower motor neuron disorders as part of neurodegenerations and secondary motor neuron disease as part of malignancy, radiation and infection.


2021 ◽  
pp. 59-64
Author(s):  
Zachary Aaron Satin ◽  
Elham Bayat

There appears to be a relationship between retroviruses such as HIV and the development of an ALS-like syndrome. Few cases have been reported; however, there exists evidence of a higher frequency of motor neuron disease in HIV-infected patients, as well as potential slowing and reversibility of disease course with combination antiretroviral therapy. We conducted a retrospective chart review of patients presenting to the George Washington University ALS Clinic from September 2006 to June 2018 to identify patients with HIV receiving HAART who were subsequently diagnosed with ALS or an ALS-like disorder. Our goals were to describe our patients’ disease course and compare them to general characteristics of ALS. We report three cases of HIV-positive individuals, all male, who were subsequently diagnosed with ALS. Each presented with symptoms of limb onset ALS with involvement of upper and lower motor neurons and whose disease originated at the cervical level. All three had been diagnosed with HIV prior to presentation and were presumably compliant with antiretroviral therapy throughout. Our patients demonstrated effective control of their HIV infection. Each experienced relatively slow progression of motor impairment compared to general ALS characteristics. Our study offers a distinct profile of HIV-positive patients compliant with HAART subsequently diagnosed with an ALS-like disorder. Further study should aim to uncover pathophysiological similarities between motor neuron disease both in the presence and absence of retroviral infection and to develop effective medical therapy for each.


Neuron ◽  
2014 ◽  
Vol 82 (2) ◽  
pp. 295-307 ◽  
Author(s):  
Constanza J. Cortes ◽  
Shuo-Chien Ling ◽  
Ling T. Guo ◽  
Gene Hung ◽  
Taiji Tsunemi ◽  
...  

2011 ◽  
Vol 3 (1) ◽  
pp. 4 ◽  
Author(s):  
Aline Furtado Bastos ◽  
Marco Orsini ◽  
Dionis Machado ◽  
Mariana Pimentel Mello ◽  
Sergio Nader ◽  
...  

The Amyotrophic lateral sclerosis (ALS) is the most common form of motor neuron disease in the adulthood, and it is characterized by rapid and progressive compromise of the upper and lower motor neurons. The majority of the cases of ALS are classified as sporadic and, until now, a specific cause for these cases still is unknown. To present the different hypotheses on the etiology of ALS. It was carried out a search in the databases: Bireme, Scielo and Pubmed, in the period of 1987 to 2011, using the following keywords: Amyotrophic lateral sclerosis, motor neuron disease, etiology, causes and epidemiology and its similar in Portuguese and Spanish. It did not have consensus as regards the etiology of ALS. Researches demonstrates evidences as regards intoxication by heavy metals, environmental and occupational causes, genetic mutations (superoxide dismutase 1), certain viral infections and the accomplishment of vigorous physical activity for the development of the disease. There is still no consensus regarding the involved factors in the etiology of ALS. In this way, new research about these etiologies are necessary, for a better approach of the patients, promoting preventive programs for the disease and improving the quality of life of the patients.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
U. E. Williams ◽  
E. E. Philip-Ephraim ◽  
S. K. Oparah

Motor neuron disease is a neurodegenerative disease characterized by loss of upper motor neuron in the motor cortex and lower motor neurons in the brain stem and spinal cord. Death occurs 2–4 years after the onset of the disease. A complex interplay of cellular processes such as mitochondrial dysfunction, oxidative stress, excitotoxicity, and impaired axonal transport are proposed pathogenetic processes underlying neuronal cell loss. Currently evidence exists for the use of riluzole as a disease modifying drug; multidisciplinary team care approach to patient management; noninvasive ventilation for respiratory management; botulinum toxin B for sialorrhoea treatment; palliative care throughout the course of the disease; and Modafinil use for fatigue treatment. Further research is needed in management of dysphagia, bronchial secretion, pseudobulbar affect, spasticity, cramps, insomnia, cognitive impairment, and communication in motor neuron disease.


2016 ◽  
Vol 74 (10) ◽  
pp. 849-854
Author(s):  
Paulo Victor Sgobbi de Souza ◽  
Wladimir Bocca Vieira de Rezende Pinto ◽  
Flávio Moura Rezende Filho ◽  
Acary Souza Bulle Oliveira

ABSTRACT Motor neuron disease is one of the major groups of neurodegenerative diseases, mainly represented by amyotrophic lateral sclerosis. Despite wide genetic and biochemical data regarding its pathophysiological mechanisms, motor neuron disease develops under a complex network of mechanisms not restricted to the unique functions of the alpha motor neurons but which actually involve diverse functions of glial cell interaction. This review aims to expose some of the leading roles of glial cells in the physiological mechanisms of neuron-glial cell interactions and the mechanisms related to motor neuron survival linked to glial cell functions.


Sign in / Sign up

Export Citation Format

Share Document