scholarly journals P.171 Primary motor cortex metabolite levels correlate with dexterity following spinal surgery for degenerative cervical myelopathy

Author(s):  
AC Friesen ◽  
SA Detombe ◽  
S Kalsi-Ryan ◽  
D Wong ◽  
W Ng ◽  
...  

Background: Spinal cord compression from degenerative cervical myelopathy is characterized by progressive loss of hand dexterity, alongside changes in the metabolite profiles in the brain and spinal cord. Correlating the changing metabolite profile with measures of dexterity following decompression surgery may assist in identifying which patients may benefit most from surgery. Methods: Thirty operative myelopathy patients consented to receive spectroscopy and GRASSP-M dexterity assessments both preoperatively and 6-weeks postoperatively. Magnetic resonance spectroscopy (TE=135) was performed in the motor cortex using a 3 Tesla Siemens MRI scanner at Robarts Research Institute. Spearman correlations were used to evaluate associations between metabolite levels and dexterity (p<0.05 was considered significant). Paired two-tailed Student t-tests were used to assess for postoperative changes in metabolite levels. Results: Postoperatively, we observed a statistically significant (p<0.05) negative correlation (r=-0.44) between the N-acetylaspartate-to-creatine ratio (NAA/Cr) and GRASSP-M dexterity scores. There was no significant difference in NAA, Cr, or NAA/Cr postoperatively. Conclusions: These findings demonstrate that patients with lower postoperative NAA/Cr usually have better recovery of dexterity. This link between the myelopathic metabolite profile and clinically meaningful dexterity values requires further investigation to understand the role of both NAA and Cr in mechanisms of postoperative recovery from myelopathy.

2021 ◽  
pp. 219256822199740
Author(s):  
Joseph R. Dettori

Fehlings MG, Badhiwala JH, Ahn H, et al. Safety and efficacy of riluzole in patients undergoing decompressive surgery for degenerative cervical myelopathy (CSM-Protect): a multicentre, double-blind, placebo-controlled, randomised, phase 3 trial. Lancet Neurol. 2020.


2021 ◽  
Author(s):  
S.S. Ananiev ◽  
D.A. Pavlov ◽  
R.N. Yakupov ◽  
V.A. Golodnova ◽  
M.V. Balykin

The study was conducted on 22 healthy men aged 18-23 years. The primary motor cortex innervating the lower limb was stimulated with transcranial magnetic stimulation. Using transcutaneous electrical stimulation of the spinal cord, evoked motor responses of the muscles of the lower extremities were initiated when electrodes were applied cutaneous between the spinous processes in the Th11-Th12 projection. Research protocol: Determination of the thresholds of BMO of the muscles of the lower extremities during TESCS; determination of the BMO threshold of the TA muscle in TMS; determination of the thresholds of the BMO of the muscles of the lower extremities during TESCS against the background of 80% and 90% TMS. It was found that magnetic stimulation of the motor cortex of the brain leads to an increase in the excitability of the neural structures of the lumbar thickening of the spinal cord and an improvement in neuromuscular interactions. Key words: transcranial magnetic stimulation, transcutaneous electrical stimulation of the spinal cord, neural networks, excitability, neuromuscular interactions.


2009 ◽  
Vol 120 (4) ◽  
pp. 796-801 ◽  
Author(s):  
Ying-Zu Huang ◽  
John C. Rothwell ◽  
Chin-Song Lu ◽  
JiunJie Wang ◽  
Yi-Hsin Weng ◽  
...  

Neurosurgery ◽  
2018 ◽  
Vol 83 (3) ◽  
pp. 521-528 ◽  
Author(s):  
Aria Nouri ◽  
Lindsay Tetreault ◽  
Satoshi Nori ◽  
Allan R Martin ◽  
Anick Nater ◽  
...  

Abstract BACKGROUND Congenital spinal stenosis (CSS) of the cervical spine is a risk factor for acute spinal cord injury and development of degenerative cervical myelopathy (DCM). OBJECTIVE To develop magnetic resonance imaging (MRI)-based criteria to diagnose preexisting CSS and evaluate differences between patients with and without CSS. METHODS A secondary analysis of international prospectively collected data between 2005 and 2011 was conducted. We examined the data of 349 surgical DCM patients and 27 controls. Spinal canal and cord anteroposterior diameters were measured at noncompressed sites to calculate spinal cord occupation ratio (SCOR). Torg–Pavlov ratios and spinal canal diameters from radiographs were correlated with SCOR. Clinical and MRI factors were compared between patients with and without CSS. Surgical outcomes were also assessed. RESULTS Calculation of SCOR was feasible in 311/349 patients. Twenty-six patients with CSS were identified (8.4%). Patients with CSS were younger than patients without CSS (P = .03) and had worse baseline severity as measured by the modified Japanese Orthopedic Association score (P = .04), Nurick scale (P = .05), and Neck Disability Index (P &lt; .01). CSS patients more commonly had T2 cord hyperintensity changes (P = .09, ns) and worse SF-36 Physical Component scores (P = .06, ns). SCOR correlated better with Torg–Pavlov ratio and spinal canal diameter at C3 than C5. Patients with SCOR ≥ 65% were also younger but did not differ in baseline severity. CONCLUSION SCOR ≥ 70% is an effective criterion to diagnose CSS. CSS patients develop myelopathy at a younger age and have greater impairment and disability than other patients with DCM. Despite this, CSS patients have comparable duration of symptoms, MRI presentations, and surgical outcomes to DCM patients without CSS.


1997 ◽  
Vol 78 (3) ◽  
pp. 1516-1530 ◽  
Author(s):  
Ruth E. Martin ◽  
Gregory M. Murray ◽  
Pentti Kemppainen ◽  
Yuji Masuda ◽  
Barry J. Sessle

Martin, Ruth E., Gregory M. Murray, Pentti Kemppainen, Yuji Masuda, and Barry J. Sessle. Functional properties of neurons in the primate tongue primary motor cortex during swallowing. J. Neurophysiol. 78: 1516–1530, 1997. Recent studies conducted in our laboratory have suggested that the tongue primary motor cortex (i.e., tongue-MI) plays a critical role in the control of voluntary tongue movements in the primate. However, the possible involvement of tongue-MI in semiautomatic tongue movements, such as those in swallowing, remains unkown. Therefore the present study was undertakein in attempts to address whether tongue-MI plays a role in the semiautomatic tongue movements produced during swallowing. Extracellular single neuron recordings were obtained from tongue-MI, defined by intracortical microstimulation (ICMS), in two awake monkeys as they performed three types of swallowing (swallowing of a juice reward after successful tongue task performance, nontask-related swallowing of a liquid bolus, and nontask-related swallowing of a solid bolus) as well as a trained tongue-protrusion task. Electromyographic activity was recorded simultaneously from various orofacial and laryngeal muscles. In addition, the afferent input to each tongue-MI neuron and ICMS-evoked motor output characteristics at each neuronal recording site were determined. Neurons were considered to show swallow and/or tongue-protrusion task-related activity if a statistically significant difference in firing rate was seen in association with these behaviors compared with that observed during a control pretrial period. Of a total of 80 neurons recorded along 40 microelectrode penetrations in the ICMS-defined tongue-MI, 69% showed significant alterations of activity in relation to the swallowing of a juice reward, whereas 66% exhibited significant modulations of firing in association with performance of the trained tongue-protrusion task. Moreover, 48% showed significant alterations of firing in relation to both swallowing and the tongue-protrusion task. These findings suggest that the region of cortex involved in swallowing includes MI and that tongue-MI may play a role in the regulation of semiautomatic tongue movement, in addition to trained motor behavior. Swallow-related tongue-MI neurons exhibited a variety of swallow-related activity patterns and were distributed throughout the ICMS-defined tongue-MI at sites where ICMS evoked a variety of types of tongue movements. These findings are consistent with the view that multiple efferent zones for the production of tongue movements are activated in swallowing. Many swallow-related tongue-MI neurons had an orofacial mechanoreceptive field, particularly on the tongue dorsum, supporting the view that afferent inputs may be involved in the regulation of the swallowing synergy.


Sign in / Sign up

Export Citation Format

Share Document