scholarly journals Comparing the Design Neurocognition of Mechanical Engineers and Architects: A Study of the Effect of Designer’s Domain

Author(s):  
Sonia Liliana da Silva Vieira ◽  
John S. Gero ◽  
Jessica Delmoral ◽  
Valentin Gattol ◽  
Carlos Fernandes ◽  
...  

AbstractNew tools from neuroscience allow design researchers to explore design neurocognition. By taking the advantage of EEG's temporal resolution we give up spatial resolution to focus on the performance of time-related design tasks. This paper presents results from an experiment using EEG to measure brain activation to study mechanical engineers and architects to compare their design neurocognition. In this study, we adopted and extended the tasks described in a previous fMRI study of design neurocognition reported in the literature. The block experiment consists of a sequence of 3 tasks: problem solving, basic design and open design using a physical interface. The block is preceded by a familiarizing pre-task using the physical interface and then extended to a fourth task using free-hand sketching. Brainwaves were collected from both mechanical engineers and architects. Results comparing 36 mechanical engineers and architects while designing were produced. These results indicate design cognition differences between the two domains in task-related power between the problem-solving task and the design tasks, in temporal resolution and transformed power.

2020 ◽  
Vol 1 ◽  
pp. 1569-1578
Author(s):  
S. Vieira ◽  
J. Gero ◽  
V. Gattol ◽  
J. Delmoral ◽  
S. Li ◽  
...  

AbstractWe present results from an EEG experiment EEG to measure neurophysiological activation to study novice and experienced designers when designing and problem-solving. We adopted and extended the tasks described in a previous fMRI study. The block experiment consists of 3 tasks: problem-solving, basic design, and open layout design. The block is preceded by a familiarizing pre-task and extended to an open design sketching task. Results from 36 sessions of mechanical engineers and industrial designers indicate significant differences in activations between the problem-solving and the design tasks.


Author(s):  
Sonia Vieira ◽  
John Gero ◽  
Jessica Delmoral ◽  
Valentin Gattol ◽  
Carlos Fernandes ◽  
...  

Abstract This paper presents results from an experiment to determine brain activation differences between problem-solving and designing of mechanical engineers. The study is part of a research project whose goal is to correlate design cognition with brain behavior across design domains. The study adopted and extended the tasks described in a fMRI study of design cognition and measured brain activation using EEG. By taking the advantage of EEG’s temporal resolution we focus on time-related neural responses during problem-solving compared to design tasks. Statistical analyses indicate increased activation when designing compared to problem-solving. Results of time-related neural responses connected to Brodmann areas cognitive functions, contribute to a better understanding of mechanical engineers’ cognition in open design tasks.


2020 ◽  
Vol 6 ◽  
Author(s):  
Sonia Vieira ◽  
John S. Gero ◽  
Jessica Delmoral ◽  
Valentin Gattol ◽  
Carlos Fernandes ◽  
...  

Abstract This paper presents results from an experiment using electroencephalography to measure neurophysiological activations of mechanical engineers and industrial designers when designing and problem-solving. In this study, we adopted and then extended the tasks described in a previous functional magnetic resonance imaging study reported in the literature. The block experiment consists of a sequence of three tasks: problem-solving, basic design and open design using a physical interface. The block is preceded by a familiarizing pre-task and then extended to a fourth open design task using free-hand sketching. This paper presents the neurophysiological results from 36 experimental sessions of mechanical engineers and industrial designers. Results indicate significant differences in activations between the problem-solving and the open design tasks. The paper focuses on the two prototypical tasks of problem-solving layout and open design sketching and presents results for both aggregate and temporal activations across participants within each domain and across domains.


2012 ◽  
Vol 318 (1-2) ◽  
pp. 135-139 ◽  
Author(s):  
Guangwei Jin ◽  
Kuncheng Li ◽  
Yulin Qin ◽  
Ning Zhong ◽  
Haiyan Zhou ◽  
...  

2008 ◽  
Vol 67 (2) ◽  
pp. 71-83 ◽  
Author(s):  
Yolanda A. Métrailler ◽  
Ester Reijnen ◽  
Cornelia Kneser ◽  
Klaus Opwis

This study compared individuals with pairs in a scientific problem-solving task. Participants interacted with a virtual psychological laboratory called Virtue to reason about a visual search theory. To this end, they created hypotheses, designed experiments, and analyzed and interpreted the results of their experiments in order to discover which of five possible factors affected the visual search process. Before and after their interaction with Virtue, participants took a test measuring theoretical and methodological knowledge. In addition, process data reflecting participants’ experimental activities and verbal data were collected. The results showed a significant but equal increase in knowledge for both groups. We found differences between individuals and pairs in the evaluation of hypotheses in the process data, and in descriptive and explanatory statements in the verbal data. Interacting with Virtue helped all students improve their domain-specific and domain-general psychological knowledge.


Author(s):  
K. Werner ◽  
M. Raab

Embodied cognition theories suggest a link between bodily movements and cognitive functions. Given such a link, it is assumed that movement influences the two main stages of problem solving: creating a problem space and creating solutions. This study explores how specific the link between bodily movements and the problem-solving process is. Seventy-two participants were tested with variations of the two-string problem (Experiment 1) and the water-jar problem (Experiment 2), allowing for two possible solutions. In Experiment 1 participants were primed with arm-swing movements (swing group) and step movements on a chair (step group). In Experiment 2 participants sat in front of three jars with glass marbles and had to sort these marbles from the outer jars to the middle one (plus group) or vice versa (minus group). Results showed more swing-like solutions in the swing group and more step-like solutions in the step group, and more addition solutions in the plus group and more subtraction solutions in the minus group. This specificity of the connection between movement and problem-solving task will allow further experiments to investigate how bodily movements influence the stages of problem solving.


2005 ◽  
Author(s):  
Rolf Reber ◽  
Marie-Antoinette Ruch-Monachon ◽  
Walter J. Perrig

Sign in / Sign up

Export Citation Format

Share Document