scholarly journals An Axiomatic Categorisation Framework for the Dynamic Alignment of Disparate Functions in Cyber-physical Systems

Author(s):  
Thomas J Byrne ◽  
Aleksandr Doikin ◽  
Felician Campean ◽  
Daniel Neagu

AbstractAdvancing Industry 4.0 concepts by mapping the product of the automotive industry on the spectrum of Cyber Physical Systems, we immediately recognise the convoluted processes involved in the design of new generation vehicles. New technologies developed around the communication core (IoT) enable novel interactions with data. Our framework employs previously untapped data from vehicles in the field for intelligent vehicle health management and knowledge integration into design. Firstly, the concept of an inter-disciplinary artefact is introduced to support the dynamic alignment of disparate functions, so that cyber variables change when physical variables change. Secondly, the axiomatic categorisation (AC) framework simulates functional transformations from artefact to artefact, to monitor and control automotive systems rather than components. Herein, an artefact is defined as a triad of the physical and engineered component, the information processing entity, and communication devices at their interface. Variable changes are modelled using AC, in conjunction with the artefacts, to aggregate functional transformations within the conceptual boundary of a physical system of systems.

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5639
Author(s):  
Nikolai Voropai

The paper deals with the main prospects and challenges of radical transformations of electric power systems (EPSs) with changes in their structure and properties conditioned by wide use of innovative energy-related technologies and digitalization and intellectualization of system operation and control. Structural trends of EPS development are the focus of the analysis. Consideration is given to changes in EPS properties driven by the use of new technologies, to the problems of system flexibility and to its enhancement. EPS “resiliency” and “survivability” notions are subjected to comparison. The main factors favoring the formation of future EPSs to cyber-physical systems are discussed. Objective trends of EPS control and protection system development are under consideration.


Author(s):  
Jan-jaap Moerman ◽  
Jan Maarten Schraagen ◽  
Jan Braaksma ◽  
Leo van Dongen

AbstractGraceful extensibility has been recently introduced and can be defined as the ability of a system to extend its capacity to adapt when surprise events challenge its boundaries. It provides basic rules that govern adaptive systems. Railway transportation systems can be considered cyber-physical systems that comprise interacting digital, analog, physical, and human components engineered for safe and reliable railway transport. This enables autonomous driving, new functionalities to achieve higher capacity, greater safety, and real-time health monitoring. New rolling stock introductions require continuous adaptations to meet the challenges of these complex railway systems as an introduction takes several years to complete and deals with changing stakeholder demands, new technologies, and technical constraints which cannot be fully predicted in advance. To sustain adaptability when introducing new rolling stock, the theory of graceful extensibility might be valuable but needs further empirical testing to be useful in the field. This study contributes by assessing the proto-theorems of graceful extensibility in a case study in the railway industry by means of adopting pattern-matching analysis. The results of this study indicate that the majority of theoretical patterns postulated by the theory are corroborated by the data. Guidelines are proposed for further operationalization of the theory in the field. Furthermore, case results indicate the need to adopt management approaches that accept indeterminism as a complement to the prevailing deterministic perspective, to sustain adaptability and deal effectively with surprise events. As such, this study may serve other critical asset introductions dealing with cyber-physical systems in their push for sustained adaptability.


2021 ◽  
pp. 1-13
Author(s):  
Zhiduo Ji ◽  
Cailian Chen ◽  
Jianping He ◽  
Shanying Zhu ◽  
Xinping Guan

2022 ◽  
pp. 226-239
Author(s):  
Onur Ugurlu ◽  
Nusin Akram ◽  
Vahid Khalilpour Akram

The new generation of fast, small, and energy-efficient devices that can connect to the internet are already used for different purposes in healthcare, smart homes, smart cities, industrial automation, and entertainment. One of the main requirements in all kinds of cyber-physical systems is a reliable communication platform. In a wired or wireless network, losing some special nodes may disconnect the communication paths between other nodes. Generally, these nodes, which are called critical nodes, have many undesired effects on the network. The authors focus on three different problems. The first problem is finding the nodes whose removal minimizes the pairwise connectivity in the residual network. The second problem is finding the nodes whose removal maximizes the number of connected components. Finally, the third problem is finding the nodes whose removal minimizes the size of the largest connected component. All three problems are NP-Complete, and the authors provide a brief survey about the existing approximated algorithms for these problems.


Information security can be efficiently provided by the sound structured information and a set of specialized experts in the field of IT and CPS. The interconnection among the systems in the CPS imposes a new challenge in providing security to CPS. A concise study of CPS security is given in this chapter. The problem of secure control systems is also indentified and defined. The way the information security and control theory guards the system is explored. The security of CPSs can be enhanced using a particular set of challenges, which are also described later in this chapter. The resistance to malicious events is strengthening as cyber physical systems are part of critical structures. The CPSs are time sensitive in nature, unlike the distributed system where a little amount of delay is acceptable.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2589 ◽  
Author(s):  
Ye Cai ◽  
Yu Chen ◽  
Yong Li ◽  
Yijia Cao ◽  
Xiangjun Zeng

With the increasing interaction between physical devices and communication components, the substation based on the IEC 61850 standard is a type of cyber–physical system. This paper proposes a reliability analysis method for substations with a cyber–physical interface matrix (CPIM). This method calculates the influences from both the physical device failures and the communication devices failures. Two indices, Probability of Load Curtailments and Expected Demand Not Supplied, are used in the reliability analysis. Given the simplified model of the practical substation based on the Chinese IEC 61850 standard, the results show that the substation system had a potential risk of cascading failure under the cyber–physical fusion trend, as the failure in cyber layer would increase the power loss of the whole system. The changing magnitude of Expected Demand Not Supplied increased significantly with increasing transmission delay rate of the process bus.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4762 ◽  
Author(s):  
Ahmed Saad ◽  
Samy Faddel ◽  
Osama Mohammed

With the emergence of distributed energy resources (DERs), with their associated communication and control complexities, there is a need for an efficient platform that can digest all the incoming data and ensure the reliable operation of the power system. The digital twin (DT) is a new concept that can unleash tremendous opportunities and can be used at the different control and security levels of power systems. This paper provides a methodology for the modelling of the implementation of energy cyber-physical systems (ECPSs) that can be used for multiple applications. Two DT types are introduced to cover the high-bandwidth and the low-bandwidth applications that need centric oversight decision making. The concept of the digital twin is validated and tested using Amazon Web Services (AWS) as a cloud host that can incorporate physical and data models as well as being able to receive live measurements from the different actual power and control entities. The experimental results demonstrate the feasibility of the real-time implementation of the DT for the ECPS based on internet of things (IoT) and cloud computing technologies. The normalized mean-square error for the low-bandwidth DT case was 3.7%. In the case of a high-bandwidth DT, the proposed method showed superior performance in reconstructing the voltage estimates, with 98.2% accuracy from only the controllers’ states.


Sign in / Sign up

Export Citation Format

Share Document