scholarly journals Hyperconvex representations and exponential growth

2013 ◽  
Vol 34 (3) ◽  
pp. 986-1010 ◽  
Author(s):  
A. SAMBARINO

AbstractLet $G$ be a real algebraic semi-simple Lie group and $\Gamma $ be the fundamental group of a closed negatively curved manifold. In this article we study the limit cone, introduced by Benoist [Propriétés asymptotiques des groupes linéaires. Geom. Funct. Anal. 7(1) (1997), 1–47], and the growth indicator function, introduced by Quint [Divergence exponentielle des sous-groupes discrets en rang supérieur. Comment. Math. Helv. 77 (2002), 503–608], for a class of representations $\rho : \Gamma \rightarrow G$ admitting an equivariant map from $\partial \Gamma $ to the Furstenberg boundary of the symmetric space of $G, $ together with a transversality condition. We then study how these objects vary with the representation.

2013 ◽  
Vol 65 (1) ◽  
pp. 66-81 ◽  
Author(s):  
Shaoqiang Deng ◽  
Zhiguang Hu

AbstractIn this paper we give an explicit formula for the flag curvature of homogeneous Randers spaces of Douglas type and apply this formula to obtain some interesting results. We first deduce an explicit formula for the flag curvature of an arbitrary left invariant Randersmetric on a two-step nilpotent Lie group. Then we obtain a classification of negatively curved homogeneous Randers spaces of Douglas type. This results, in particular, in many examples of homogeneous non-Riemannian Finsler spaces with negative flag curvature. Finally, we prove a rigidity result that a homogeneous Randers space of Berwald type whose flag curvature is everywhere nonzero must be Riemannian.


2015 ◽  
Vol 26 (05) ◽  
pp. 1550039
Author(s):  
Salma Nasrin

Let Gℂ be a complex simple Lie group, GU a compact real form, and [Formula: see text] the natural projection between the dual of the Lie algebras. We prove that, for any coadjoint orbit [Formula: see text] of GU, the intersection of [Formula: see text] with a coadjoint orbit [Formula: see text] of Gℂ is either an empty set or a single orbit of GU if [Formula: see text] is isomorphic to a complex symmetric space.


1992 ◽  
Vol 44 (5) ◽  
pp. 897-910 ◽  
Author(s):  
G. Alexopoulos

AbstractWe give a lower estimate for the central value μ*n(e) of the nth convolution power μ*···*μ of a symmetric probability measure μ on a polycyclic group G of exponential growth whose support is finite and generates G. We also give a similar large time diagonal estimate for the fundamendal solution of the equation (∂/∂t + L)u = 0, where L is a left invariant sub-Laplacian on a unimodular amenable Lie group G of exponential growth.


2018 ◽  
Vol 2020 (5) ◽  
pp. 1346-1365 ◽  
Author(s):  
Jason DeVito ◽  
Ezra Nance

Abstract A Riemannian manifold is said to be almost positively curved if the set of points for which all two-planes have positive sectional curvature is open and dense. We show that the Grassmannian of oriented two-planes in $\mathbb{R}^{7}$ admits a metric of almost positive curvature, giving the first example of an almost positively curved metric on an irreducible compact symmetric space of rank greater than 1. The construction and verification rely on the Lie group $\mathbf{G}_{2}$ and the octonions, so do not obviously generalize to any other Grassmannians.


1992 ◽  
Vol 34 (3) ◽  
pp. 379-394 ◽  
Author(s):  
Karl-Hermann Neeb

The simplest type of Lie semigroups are closed convex cones in finite dimensional vector spaces. In general one defines a Lie semigroup to be a closed subsemigroup of a Lie group which is generated by one-parameter semigroups. If W is a closed convex cone in a vector space V, then W is convex and therefore simply connected. A similar statement for Lie semigroups is false in general. There exist generating Lie semigroups in simply connected Lie groups which are not simply connected (Example 1.15). To find criteria for cases when this is true, one has to consider the homomorphisminduced by the inclusion mapping i:S→G, where S is a generating Lie semigroup in the Lie group G. Our main results concern the description of the image and the kernel of this mapping. We show that the image is the fundamental group of the largest covering group of G, into which S lifts, and that the kernel is the fundamental group of the inverse image of 5 in the universal covering group G. To get these results we construct a universal covering semigroup S of S. If j: H(S): = S ∩ S-1 →S is the inclusion mapping of the unit group of S into S, then it turns out that the kernel of the induced mappingmay be identfied with the fundamental group of the unit group H(S)of S and that its image corresponds to the intersection H(S)0 ⋂π1(S), where π1(s) is identified with a central subgroup of S.


2013 ◽  
Vol 15 (03) ◽  
pp. 1250056 ◽  
Author(s):  
HUI LI

Let G be a connected compact Lie group, and let M be a connected Hamiltonian G-manifold with equivariant moment map ϕ. We prove that if there is a simply connected orbit G ⋅ x, then π1(M) ≅ π1(M/G); if additionally ϕ is proper, then π1(M) ≅ π1 (ϕ-1(G⋅a)), where a = ϕ(x). We also prove that if a maximal torus of G has a fixed point x, then π1(M) ≅ π1(M/K), where K is any connected subgroup of G; if additionally ϕ is proper, then π1(M) ≅ π1(ϕ-1(G⋅a)) ≅ π1(ϕ-1(a)), where a = ϕ(x). Furthermore, we prove that if ϕ is proper, then [Formula: see text] for all a ∈ ϕ(M), where [Formula: see text] is any connected subgroup of G which contains the identity component of each stabilizer group; in particular, π1(M/G) ≅ π1(ϕ-1(G⋅a)/G) for all a ∈ ϕ(M).


2011 ◽  
Vol 148 (3) ◽  
pp. 807-834 ◽  
Author(s):  
Giorgio Trentinaglia ◽  
Chenchang Zhu

AbstractWe define stacky Lie groups to be group objects in the 2-category of differentiable stacks. We show that every connected and étale stacky Lie group is equivalent to a crossed module of the form (Γ,G) where Γ is the fundamental group of the given stacky Lie group and G is the connected and simply connected Lie group integrating the Lie algebra of the stacky group. Our result is closely related to a strictification result of Baez and Lauda.


2014 ◽  
Vol 07 (01) ◽  
pp. 23-46 ◽  
Author(s):  
Sungwoon Kim ◽  
Thilo Kuessner

Let M be the interior of a connected, oriented, compact manifold V of dimension at least 2. If each path component of ∂V has amenable fundamental group, then we prove that the simplicial volume of M is equal to the relative simplicial volume of V and also to the geometric (Lipschitz) simplicial volume of any Riemannian metric on M whenever the latter is finite. As an application we establish the proportionality principle for the simplicial volume of complete, pinched negatively curved manifolds of finite volume.


Sign in / Sign up

Export Citation Format

Share Document