scholarly journals THE FUNDAMENTAL GROUP OF G-MANIFOLDS

2013 ◽  
Vol 15 (03) ◽  
pp. 1250056 ◽  
Author(s):  
HUI LI

Let G be a connected compact Lie group, and let M be a connected Hamiltonian G-manifold with equivariant moment map ϕ. We prove that if there is a simply connected orbit G ⋅ x, then π1(M) ≅ π1(M/G); if additionally ϕ is proper, then π1(M) ≅ π1 (ϕ-1(G⋅a)), where a = ϕ(x). We also prove that if a maximal torus of G has a fixed point x, then π1(M) ≅ π1(M/K), where K is any connected subgroup of G; if additionally ϕ is proper, then π1(M) ≅ π1(ϕ-1(G⋅a)) ≅ π1(ϕ-1(a)), where a = ϕ(x). Furthermore, we prove that if ϕ is proper, then [Formula: see text] for all a ∈ ϕ(M), where [Formula: see text] is any connected subgroup of G which contains the identity component of each stabilizer group; in particular, π1(M/G) ≅ π1(ϕ-1(G⋅a)/G) for all a ∈ ϕ(M).

Author(s):  
Francis Clarke

Let G be a simply connected, semi-simple, compact Lie group, let K* denote Z/2-graded, representable K-theory, and K* the corresponding homology theory. The K-theory of G and of its classifying space BG are well known, (8),(1). In contrast with ordinary cohomology, K*(G) and K*(BG) are torsion-free and have simple multiplicative structures. If ΩG denotes the space of loops on G, it seems natural to conjecture that K*(ΩG) should have, in some sense, a more simple structure than H*(ΩG).


Author(s):  
Loring W. Tu

This chapter describes the topology of a group action. It proves some topological facts about the fixed point set and the stabilizers of a continuous or a smooth action. The chapter also introduces the equivariant tubular neighborhood theorem and the equivariant Mayer–Vietoris sequence. A tubular neighborhood of a submanifold S in a manifold M is a neighborhood that has the structure of a vector bundle over S. Because the total space of a vector bundle has the same homotopy type as the base space, in calculating cohomology one may replace a submanifold by a tubular neighborhood. The tubular neighborhood theorem guarantees the existence of a tubular neighborhood for a compact regular submanifold. The Mayer–Vietoris sequence is a powerful tool for calculating the cohomology of a union of two open subsets. Both the tubular neighborhood theorem and the Mayer–Vietoris sequence have equivariant counterparts for a G-manifold where G is a compact Lie group.


2018 ◽  
Vol 2018 (742) ◽  
pp. 157-186 ◽  
Author(s):  
Yuki Arano

Abstract We study irreducible spherical unitary representations of the Drinfeld double of the q-deformation of a connected simply connected compact Lie group, which can be considered as a quantum analogue of the complexification of the Lie group. In the case of \mathrm{SU}_{q}(3) , we give a complete classification of such representations. As an application, we show the Drinfeld double of the quantum group \mathrm{SU}_{q}(2n+1) has property (T), which also implies central property (T) of the dual of \mathrm{SU}_{q}(2n+1) .


1972 ◽  
Vol 24 (5) ◽  
pp. 819-824
Author(s):  
C. M. Naylor

The β-construction assigns to each complex representation φ of the compact Lie group G a unique element β(φ) in (G). For the details of this construction the reader is referred to [1] or [5]. The purpose of the present paper is to determine some of the properties of the element β(φ) in terms of the invariants of the representation φ. More precisely, we consider the following question. Let G be a simple, simply-connected compact Lie group and let f : S3 →G be a Lie group homomorphism. Then (S3) ⋍ Z with generator x = β(φ1), φ1 the fundamental representation of S3 , so that if φ is a representation of G,f*(φ) = n(φ)x, where n(φ) is an integer depending on φ and f . The problem is to determine n(φ).Since G is simple and simply-connected we may assume that ch2, the component of the Chern character in dimension 4 takes its values in H4(SG,Z)≅Z. Let u be a generator of H4(SG,Z) so that ch2(β (φ)) = m(φ)u, m(φ) an integer depending on φ.


1992 ◽  
Vol 34 (3) ◽  
pp. 379-394 ◽  
Author(s):  
Karl-Hermann Neeb

The simplest type of Lie semigroups are closed convex cones in finite dimensional vector spaces. In general one defines a Lie semigroup to be a closed subsemigroup of a Lie group which is generated by one-parameter semigroups. If W is a closed convex cone in a vector space V, then W is convex and therefore simply connected. A similar statement for Lie semigroups is false in general. There exist generating Lie semigroups in simply connected Lie groups which are not simply connected (Example 1.15). To find criteria for cases when this is true, one has to consider the homomorphisminduced by the inclusion mapping i:S→G, where S is a generating Lie semigroup in the Lie group G. Our main results concern the description of the image and the kernel of this mapping. We show that the image is the fundamental group of the largest covering group of G, into which S lifts, and that the kernel is the fundamental group of the inverse image of 5 in the universal covering group G. To get these results we construct a universal covering semigroup S of S. If j: H(S): = S ∩ S-1 →S is the inclusion mapping of the unit group of S into S, then it turns out that the kernel of the induced mappingmay be identfied with the fundamental group of the unit group H(S)of S and that its image corresponds to the intersection H(S)0 ⋂π1(S), where π1(s) is identified with a central subgroup of S.


2002 ◽  
Vol 13 (03) ◽  
pp. 217-225 ◽  
Author(s):  
MARCOS SALVAI

By a generalization of the method developed by Gluck and Warner to characterize the oriented great circle fibrations of the three-sphere, we give, for any compact connected semisimple Lie group G, a general procedure to obtain the continuous fibrations of G by Weyl-oriented affine maximal tori, find conditions for smoothness and provide infinite dimensional spaces of concrete examples.


2000 ◽  
Vol 02 (01) ◽  
pp. 75-86 ◽  
Author(s):  
FUQUAN FANG ◽  
XIAOCHUN RONG

We prove a vanishing theorem of certain cohomology classes for an 2n-manifold of finite fundamental group which admits a fixed point free circle action. In particular, it implies that any Tk-action on a compact symplectic manifold of finite fundamental group has a non-empty fixed point set. The vanishing theorem is used to prove two finiteness results in which no lower bound on volume is assumed. (i) The set of symplectic n-manifolds of finite fundamental groups with curvature, λ ≤ sec ≤ Λ, and diameter, diam ; ≤ d, contains only finitely many diffeomorphism types depending only on n, λ, Λ and d. (ii) The set of simply connected n-manifolds (n ≤ 6) with λ ≤ sec ≤ Λ and diam ≤ d contains only finitely many diffeomorphism types depending only on n, λ, Λ and d.


2020 ◽  
Vol 156 (3) ◽  
pp. 613-646 ◽  
Author(s):  
Hans-Christian Herbig ◽  
Gerald W. Schwarz ◽  
Christopher Seaton

Let $K$ be a compact Lie group with complexification $G$, and let $V$ be a unitary $K$-module. We consider the real symplectic quotient $M_{0}$ at level zero of the homogeneous quadratic moment map as well as the complex symplectic quotient, defined here as the complexification of $M_{0}$. We show that if $(V,G)$ is $3$-large, a condition that holds generically, then the complex symplectic quotient has symplectic singularities and is graded Gorenstein. This implies in particular that the real symplectic quotient is graded Gorenstein. In case $K$ is a torus or $\operatorname{SU}_{2}$, we show that these results hold without the hypothesis that $(V,G)$ is $3$-large.


1951 ◽  
Vol 2 ◽  
pp. 95-110 ◽  
Author(s):  
Yozô Matsushima

Recently A, Malcev has shown that the homogeneous space of a connected nilpotent Lie group G is the direct product of a compact space and an Euclidean-space and that the compact space of this direct decomposition is also a homogeneous space of a connected subgroup of G. Any compact homogeneous space M of a connected nilpotent Lie group is of the form where is a connected simply connected nilpotent group whose structure constants are rational numbers in a suitable coordinate system and D is a discrete subgroup of G.


2011 ◽  
Vol 148 (3) ◽  
pp. 807-834 ◽  
Author(s):  
Giorgio Trentinaglia ◽  
Chenchang Zhu

AbstractWe define stacky Lie groups to be group objects in the 2-category of differentiable stacks. We show that every connected and étale stacky Lie group is equivalent to a crossed module of the form (Γ,G) where Γ is the fundamental group of the given stacky Lie group and G is the connected and simply connected Lie group integrating the Lie algebra of the stacky group. Our result is closely related to a strictification result of Baez and Lauda.


Sign in / Sign up

Export Citation Format

Share Document