scholarly journals Nonspecial varieties and generalised Lang–Vojta conjectures

2021 ◽  
Vol 9 ◽  
Author(s):  
Erwan Rousseau ◽  
Amos Turchet ◽  
Julie Tzu-Yueh Wang

Abstract We construct a family of fibred threefolds $X_m \to (S , \Delta )$ such that $X_m$ has no étale cover that dominates a variety of general type but it dominates the orbifold $(S,\Delta )$ of general type. Following Campana, the threefolds $X_m$ are called weakly special but not special. The Weak Specialness Conjecture predicts that a weakly special variety defined over a number field has a potentially dense set of rational points. We prove that if m is big enough, the threefolds $X_m$ present behaviours that contradict the function field and analytic analogue of the Weak Specialness Conjecture. We prove our results by adapting the recent method of Ru and Vojta. We also formulate some generalisations of known conjectures on exceptional loci that fit into Campana’s program and prove some cases over function fields.

Author(s):  
CLEMENS FUCHS ◽  
SEBASTIAN HEINTZE

Abstract Let $ (G_n)_{n=0}^{\infty } $ be a nondegenerate linear recurrence sequence whose power sum representation is given by $ G_n = a_1(n) \alpha _1^n + \cdots + a_t(n) \alpha _t^n $ . We prove a function field analogue of the well-known result in the number field case that, under some nonrestrictive conditions, $ |{G_n}| \geq ( \max _{j=1,\ldots ,t} |{\alpha _j}| )^{n(1-\varepsilon )} $ for $ n $ large enough.


Author(s):  
TADASHI OCHIAI ◽  
FABIEN TRIHAN

AbstractWe study a (p-adic) geometric analogue for abelian varieties over a function field of characteristic p of the cyclotomic Iwasawa theory and the non-commutative Iwasawa theory for abelian varieties over a number field initiated by Mazur and Coates respectively. We will prove some analogue of the principal results obtained in the case over a number field and we study new phenomena which did not happen in the case of number field case. We also propose a conjecture (Conjecture 1.6) which might be considered as a counterpart of the principal conjecture in the case over a number field.


2014 ◽  
Vol 10 (03) ◽  
pp. 705-735
Author(s):  
APRAMEYO PAL

In this paper we apply methods from the number field case of Perrin-Riou [20] and Zábrádi [32] in the function field setup. In ℤℓ- and GL2-cases (ℓ ≠ p), we prove algebraic functional equations of the Pontryagin dual of Selmer group which give further evidence of the main conjectures of Iwasawa theory. We also prove some parity conjectures in commutative and non-commutative cases. As a consequence, we also get results on the growth behavior of Selmer groups in commutative and non-commutative extension of function fields.


2020 ◽  
Vol 378 (3-4) ◽  
pp. 993-1019
Author(s):  
Ambrus Pál ◽  
Endre Szabó

Abstract Let $$\mathbb R(C)$$ R ( C ) be the function field of a smooth, irreducible projective curve over $$\mathbb R$$ R . Let X be a smooth, projective, geometrically irreducible variety equipped with a dominant morphism f onto a smooth projective rational variety with a smooth generic fibre over $$\mathbb R(C)$$ R ( C ) . Assume that the cohomological obstruction introduced by Colliot-Thélène is the only one to the local-global principle for rational points for the smooth fibres of f over $$\mathbb R(C)$$ R ( C ) -valued points. Then we show that the same holds for X, too, by adopting the fibration method similarly to Harpaz–Wittenberg.


1999 ◽  
Vol 1999 (511) ◽  
pp. 87-93 ◽  
Author(s):  
F. A Bogomolov ◽  
Yu Tschinkel

1. Introduction Let X be an algebraic variety defined over a number field F. We will say that rational points are potentially dense if there exists a finite extension K/F such that the set of K-rational points X(K) is Zariski dense in X. The main problem is to relate this property to geometric invariants of X. Hypothetically, on varieties of general type rational points are not potentially dense. In this paper we are interested in smooth projective varieties such that neither they nor their unramified coverings admit a dominant map onto varieties of general type. For these varieties it seems plausible to expect that rational points are potentially dense (see [2]).


1959 ◽  
Vol 14 ◽  
pp. 223-234 ◽  
Author(s):  
Hisasi Morikawa

Let k be an algebraically closed field of characteristic p>0. Let K/k be a function field of one variable and L/K be an unramified separable abelian extension of degree pr over K. The galois automorphisms ε1, …, εpr of L/K are naturally extended to automorphisms η(ε1), … , η(εpr) of the jacobian variety JL of L/k. If we take a svstem of p-adic coordinates on JL, we get a representation {Mp(η(εv))} of the galois group G(L/K) of L/K over p-adic integers.


2010 ◽  
Vol 88 (3) ◽  
pp. 301-312
Author(s):  
C. ÁLVAREZ-GARCÍA ◽  
G. VILLA-SALVADOR

AbstractLetE/kbe a function field over an infinite field of constants. Assume thatE/k(x) is a separable extension of degree greater than one such that there exists a place of degree one ofk(x) ramified inE. LetK/kbe a function field. We prove that there exist infinitely many nonisomorphic separable extensionsL/Ksuch that [L:K]=[E:k(x)] andAutkL=AutKL≅Autk(x)E.


2006 ◽  
Vol 73 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Naoya Nakazawa

The purpose of this article is to construct families of elliptic curves E over finite fields F so that the groups of F-rational points of E are cyclic, by using a representation of the modular invariant function by a generator of a modular function field associated with the modular group Γ0(N), where N = 5, 7 or 13.


2010 ◽  
Vol 53 (1) ◽  
pp. 87-94
Author(s):  
Dragos Ghioca

AbstractWe prove that the group of rational points of a non-isotrivial elliptic curve defined over the perfect closure of a function field in positive characteristic is finitely generated.


Sign in / Sign up

Export Citation Format

Share Document