scholarly journals The fibration method over real function fields

2020 ◽  
Vol 378 (3-4) ◽  
pp. 993-1019
Author(s):  
Ambrus Pál ◽  
Endre Szabó

Abstract Let $$\mathbb R(C)$$ R ( C ) be the function field of a smooth, irreducible projective curve over $$\mathbb R$$ R . Let X be a smooth, projective, geometrically irreducible variety equipped with a dominant morphism f onto a smooth projective rational variety with a smooth generic fibre over $$\mathbb R(C)$$ R ( C ) . Assume that the cohomological obstruction introduced by Colliot-Thélène is the only one to the local-global principle for rational points for the smooth fibres of f over $$\mathbb R(C)$$ R ( C ) -valued points. Then we show that the same holds for X, too, by adopting the fibration method similarly to Harpaz–Wittenberg.

2017 ◽  
Vol 154 (2) ◽  
pp. 410-458 ◽  
Author(s):  
R. Parimala ◽  
R. Preeti ◽  
V. Suresh

Let $K$ be a (non-archimedean) local field and let $F$ be the function field of a curve over $K$. Let $D$ be a central simple algebra over $F$ of period $n$ and $\unicode[STIX]{x1D706}\in F^{\ast }$. We show that if $n$ is coprime to the characteristic of the residue field of $K$ and $D\cdot (\unicode[STIX]{x1D706})=0$ in $H^{3}(F,\unicode[STIX]{x1D707}_{n}^{\otimes 2})$, then $\unicode[STIX]{x1D706}$ is a reduced norm from $D$. This leads to a Hasse principle for the group $\operatorname{SL}_{1}(D)$, namely, an element $\unicode[STIX]{x1D706}\in F^{\ast }$ is a reduced norm from $D$ if and only if it is a reduced norm locally at all discrete valuations of $F$.


2014 ◽  
Vol 10 (08) ◽  
pp. 2187-2204
Author(s):  
Hsiu-Lien Huang ◽  
Chia-Liang Sun ◽  
Julie Tzu-Yueh Wang

Over the function field of a smooth projective curve over an algebraically closed field, we investigate the set of S-integral elements in a forward orbit under a rational function by establishing some analogues of the classical Siegel theorem.


2021 ◽  
Vol 9 ◽  
Author(s):  
Erwan Rousseau ◽  
Amos Turchet ◽  
Julie Tzu-Yueh Wang

Abstract We construct a family of fibred threefolds $X_m \to (S , \Delta )$ such that $X_m$ has no étale cover that dominates a variety of general type but it dominates the orbifold $(S,\Delta )$ of general type. Following Campana, the threefolds $X_m$ are called weakly special but not special. The Weak Specialness Conjecture predicts that a weakly special variety defined over a number field has a potentially dense set of rational points. We prove that if m is big enough, the threefolds $X_m$ present behaviours that contradict the function field and analytic analogue of the Weak Specialness Conjecture. We prove our results by adapting the recent method of Ru and Vojta. We also formulate some generalisations of known conjectures on exceptional loci that fit into Campana’s program and prove some cases over function fields.


Author(s):  
CLEMENS FUCHS ◽  
SEBASTIAN HEINTZE

Abstract Let $ (G_n)_{n=0}^{\infty } $ be a nondegenerate linear recurrence sequence whose power sum representation is given by $ G_n = a_1(n) \alpha _1^n + \cdots + a_t(n) \alpha _t^n $ . We prove a function field analogue of the well-known result in the number field case that, under some nonrestrictive conditions, $ |{G_n}| \geq ( \max _{j=1,\ldots ,t} |{\alpha _j}| )^{n(1-\varepsilon )} $ for $ n $ large enough.


1959 ◽  
Vol 14 ◽  
pp. 223-234 ◽  
Author(s):  
Hisasi Morikawa

Let k be an algebraically closed field of characteristic p>0. Let K/k be a function field of one variable and L/K be an unramified separable abelian extension of degree pr over K. The galois automorphisms ε1, …, εpr of L/K are naturally extended to automorphisms η(ε1), … , η(εpr) of the jacobian variety JL of L/k. If we take a svstem of p-adic coordinates on JL, we get a representation {Mp(η(εv))} of the galois group G(L/K) of L/K over p-adic integers.


2010 ◽  
Vol 88 (3) ◽  
pp. 301-312
Author(s):  
C. ÁLVAREZ-GARCÍA ◽  
G. VILLA-SALVADOR

AbstractLetE/kbe a function field over an infinite field of constants. Assume thatE/k(x) is a separable extension of degree greater than one such that there exists a place of degree one ofk(x) ramified inE. LetK/kbe a function field. We prove that there exist infinitely many nonisomorphic separable extensionsL/Ksuch that [L:K]=[E:k(x)] andAutkL=AutKL≅Autk(x)E.


2006 ◽  
Vol 73 (2) ◽  
pp. 245-254 ◽  
Author(s):  
Naoya Nakazawa

The purpose of this article is to construct families of elliptic curves E over finite fields F so that the groups of F-rational points of E are cyclic, by using a representation of the modular invariant function by a generator of a modular function field associated with the modular group Γ0(N), where N = 5, 7 or 13.


2018 ◽  
Vol Volume 2 ◽  
Author(s):  
Jean-Louis Colliot-Thélène ◽  
Alena Pirutka

En combinant une m\'ethode de C. Voisin avec la descente galoisienne sur le groupe de Chow en codimension $2$, nous montrons que le troisi\`eme groupe de cohomologie non ramifi\'ee d'un solide cubique lisse d\'efini sur le corps des fonctions d'une courbe complexe est nul. Ceci implique que la conjecture de Hodge enti\`ere pour les classes de degr\'e 4 vaut pour les vari\'et\'es projectives et lisses de dimension 4 fibr\'ees en solides cubiques au-dessus d'une courbe, sans restriction sur les fibres singuli\`eres. --------------- We prove that the third unramified cohomology group of a smooth cubic threefold over the function field of a complex curve vanishes. For this, we combine a method of C. Voisin with Galois descent on the codimension $2$ Chow group. As a corollary, we show that the integral Hodge conjecture holds for degree $4$ classes on smooth projective fourfolds equipped with a fibration over a curve, the generic fibre of which is a smooth cubic threefold, with arbitrary singularities on the special fibres. Comment: in French


2010 ◽  
Vol 53 (1) ◽  
pp. 87-94
Author(s):  
Dragos Ghioca

AbstractWe prove that the group of rational points of a non-isotrivial elliptic curve defined over the perfect closure of a function field in positive characteristic is finitely generated.


Sign in / Sign up

Export Citation Format

Share Document