Direct numerical simulation of spatially developing turbulent boundary layers with uniform blowing or suction

2011 ◽  
Vol 681 ◽  
pp. 154-172 ◽  
Author(s):  
YUKINORI KAMETANI ◽  
KOJI FUKAGATA

Direct numerical simulation (DNS) of spatially developing turbulent boundary layer with uniform blowing (UB) or uniform suction (US) is performed aiming at skin friction drag reduction. The Reynolds number based on the free stream velocity and the 99% boundary layer thickness at the inlet is set to be 3000. A constant wall-normal velocity is applied on the wall in the range, −0.01U∞ ≤ Vctr ≤ 0.01U∞. The DNS results show that UB reduces the skin friction drag, while US increases it. The turbulent fluctuations exhibit the opposite trend: UB enhances the turbulence, while US suppresses it. Dynamical decomposition of the local skin friction coefficient cf using the identity equation (FIK identity) (Fukagata, Iwamoto & Kasagi, Phys. Fluids, vol. 14, 2002, pp. L73–L76) reveals that the mean convection term in UB case works as a strong drag reduction factor, while that in US case works as a strong drag augmentation factor: in both cases, the contribution of mean convection on the friction drag overwhelms the turbulent contribution. It is also found that the control efficiency of UB is much higher than that of the advanced active control methods proposed for channel flows.

2014 ◽  
Vol 750 ◽  
pp. 316-354 ◽  
Author(s):  
H. L. Bai ◽  
Y. Zhou ◽  
W. G. Zhang ◽  
S. J. Xu ◽  
Y. Wang ◽  
...  

AbstractActive control of a turbulent boundary layer has been experimentally investigated with a view to reducing the skin-friction drag and gaining some insight into the mechanism that leads to drag reduction. A spanwise-aligned array of piezo-ceramic actuators was employed to generate a transverse travelling wave along the wall surface, with a specified phase shift between adjacent actuators. Local skin-friction drag exhibits a strong dependence on control parameters, including the wavelength, amplitude and frequency of the oscillation. A maximum drag reduction of 50 % has been achieved at 17 wall units downstream of the actuators. The near-wall flow structure under control, measured using smoke–wire flow visualization, hot-wire and particle image velocimetry techniques, is compared with that without control. The data have been carefully analysed using techniques such as streak detection, power spectra and conditional averaging based on the variable-interval time-average detection. All the results point to a pronounced change in the organization of the perturbed boundary layer. It is proposed that the actuation-induced wave generates a layer of highly regularized streamwise vortices, which acts as a barrier between the large-scale coherent structures and the wall, thus interfering with the turbulence production cycle and contributing partially to the drag reduction. Associated with the generation of regularized vortices is a significant increase, in the near-wall region, of the mean energy dissipation rate, as inferred from a substantial decrease in the Taylor microscale. This increase also contributes to the drag reduction. The scaling of the drag reduction is also examined empirically, providing valuable insight into the active control of drag reduction.


Author(s):  
John Kim

Turbulence physics responsible for high skin-friction drag in turbulent boundary layers is first reviewed. A self-sustaining process of near-wall turbulence structures is then discussed from the perspective of controlling this process for the purpose of skin-friction drag reduction. After recognizing that key parts of this self-sustaining process are linear, a linear systems approach to boundary-layer control is discussed. It is shown that singular-value decomposition analysis of the linear system allows us to examine different approaches to boundary-layer control without carrying out the expensive nonlinear simulations. Results from the linear analysis are consistent with those observed in full nonlinear simulations, thus demonstrating the validity of the linear analysis. Finally, fundamental performance limit expected of optimal control input is discussed.


2016 ◽  
Vol 810 ◽  
pp. 60-81 ◽  
Author(s):  
Nicolò Fabbiane ◽  
Shervin Bagheri ◽  
Dan S. Henningson

A reactive control technique with localised actuators and sensors is used to delay the transition to turbulence in a flat-plate boundary-layer flow. Through extensive direct numerical simulations, it is shown that an adaptive technique, which computes the control law on-line, is able to significantly reduce skin-friction drag in the presence of random three-dimensional perturbation fields with linear and weakly nonlinear behaviour. An energy budget analysis is performed in order to assess the net energy saving capabilities of the linear control approach. When considering a model of the dielectric-barrier-discharge (DBD) plasma actuator, the energy spent to create appropriate actuation force inside the boundary layer is of the same order as the energy gained from reducing skin-friction drag. With a model of an ideal actuator a net energy gain of three orders of magnitude can be achieved by efficiently damping small-amplitude disturbances upstream. The energy analysis in this study thus provides an upper limit for what we can expect in terms of drag-reduction efficiency for linear control of transition as a means for drag reduction.


1998 ◽  
Vol 122 (3) ◽  
pp. 442-449 ◽  
Author(s):  
Xiaohua Wu ◽  
Paul A. Durbin

Turbulent wakes swept across a flat plate boundary layer simulate the phenomenon of wake-induced bypass transition. Benchmark data from a direct numerical simulation of this process are presented and compared to Reynolds-averaged predictions. The data are phase-averaged skin friction and mean velocities. The predictions and data are found to agree in many important respects. One discrepancy is a failure to reproduce the skin friction overshoot following transition. [S0889-504X(00)00503-1]


Author(s):  
Hidetoshi Iijima ◽  
Hidemi Takahashi ◽  
Seigo Koga ◽  
Monami Sasamori ◽  
Yoshimi Iijima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document