Direct numerical simulation of axisymmetric wakes embedded in turbulence

2012 ◽  
Vol 710 ◽  
pp. 482-504 ◽  
Author(s):  
Elad Rind ◽  
Ian P. Castro

AbstractDirect numerical simulation has been used to study the effects of external turbulence on axisymmetric wakes. In the absence of such turbulence, the time-developing axially homogeneous wake is found to have the self-similar properties expected whereas, in the absence of the wake, the turbulence fields had properties similar to Saffman-type turbulence. Merging of the two flows was undertaken for three different levels of external turbulence (relative to the wake strength) and it is shown that the presence of the external turbulence enhances the decay rate of the wake, with the new decay rates increasing with the relative strength of the initial external turbulence. The external turbulence is found to destroy any possibility of self-similarity within the developing wake, causing a significant transformation in the latter as it gradually evolves towards the former.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Filomena Feo ◽  
Juan Luis Vázquez ◽  
Bruno Volzone

Abstract We study an anisotropic, possibly non-homogeneous version of the evolution 𝑝-Laplacian equation when fast diffusion holds in all directions. We develop the basic theory and prove symmetrization results from which we derive sharp L 1 L^{1} - L ∞ L^{\infty} estimates. We prove the existence of a self-similar fundamental solution of this equation in the appropriate exponent range, and uniqueness in a smaller range. We also obtain the asymptotic behaviour of finite mass solutions in terms of the self-similar solution. Positivity, decay rates as well as other properties of the solutions are derived. The combination of self-similarity and anisotropy is not common in the related literature. It is however essential in our analysis and creates mathematical difficulties that are solved for fast diffusions.


2012 ◽  
Vol 711 ◽  
pp. 437-468 ◽  
Author(s):  
Qiang Zhou ◽  
Feng He ◽  
M. Y. Shen

AbstractThe spatially developing compressible plane mixing layer with a convective Mach number of 0.7 is investigated by direct numerical simulation. A pair of equal and opposite oblique instability waves is introduced to perturb the mixing layer at the inlet. The full evolution process of instability, including formation of $ \mrm{\Lambda} $-vortices and hairpin vortices, breakdown of large structures and establishment of self-similar turbulence, is presented clearly in the simulation. In the transition process, the flow fields are populated sequentially by $ \mrm{\Lambda} $-vortices, hairpin vortices and ‘flower’ structures. This is the first direct evidence showing the dominance of these structures in the spatially developing mixing layer. Hairpin vortices are found to play an important role in the breakdown of the flow. The legs of hairpin vortices first evolve into sheaths with intense vorticity then break up into small slender vortices. The later flower structures are produced by the instability of the heads of the hairpin vortices. They prevail for a long distance in the mixing layer until the flow starts to settle down into its self-similar state. The preponderance of slender inclined streamwise vortices is observed in the transversal middle zone of the transition region after the breakup of the hairpin legs. This predominance of streamwise vortices also persists in the self-similar turbulent region, though the vortices there are found to be relatively very weak. The evolution of both the mean streamwise velocity profile and the Reynolds stresses is found to have close connection to the behaviour of the large vortex structures. High growth rates of the momentum and vorticity thicknesses are observed in the transition region of the flow. The growth rates in the self-similar turbulence region decay to a value that agrees well with previous experimental and numerical studies. Shocklets occur in the simulation, and their formation mechanisms are elaborated and categorized. This is the first three-dimensional simulation that captures shocklets at this low convective Mach number.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 314
Author(s):  
Tianyu Jing ◽  
Huilan Ren ◽  
Jian Li

The present study investigates the similarity problem associated with the onset of the Mach reflection of Zel’dovich–von Neumann–Döring (ZND) detonations in the near field. The results reveal that the self-similarity in the frozen-limit regime is strictly valid only within a small scale, i.e., of the order of the induction length. The Mach reflection becomes non-self-similar during the transition of the Mach stem from “frozen” to “reactive” by coupling with the reaction zone. The triple-point trajectory first rises from the self-similar result due to compressive waves generated by the “hot spot”, and then decays after establishment of the reactive Mach stem. It is also found, by removing the restriction, that the frozen limit can be extended to a much larger distance than expected. The obtained results elucidate the physical origin of the onset of Mach reflection with chemical reactions, which has previously been observed in both experiments and numerical simulations.


Fractals ◽  
2010 ◽  
Vol 18 (03) ◽  
pp. 349-361 ◽  
Author(s):  
BÜNYAMIN DEMÍR ◽  
ALI DENÍZ ◽  
ŞAHIN KOÇAK ◽  
A. ERSIN ÜREYEN

Lapidus and Pearse proved recently an interesting formula about the volume of tubular neighborhoods of fractal sprays, including the self-similar fractals. We consider the graph-directed fractals in the sense of graph self-similarity of Mauldin-Williams within this framework of Lapidus-Pearse. Extending the notion of complex dimensions to the graph-directed fractals we compute the volumes of tubular neighborhoods of their associated tilings and give a simplified and pointwise proof of a version of Lapidus-Pearse formula, which can be applied to both self-similar and graph-directed fractals.


2019 ◽  
Vol 880 ◽  
pp. 239-283 ◽  
Author(s):  
Christoph Wenzel ◽  
Tobias Gibis ◽  
Markus Kloker ◽  
Ulrich Rist

A direct numerical simulation study of self-similar compressible flat-plate turbulent boundary layers (TBLs) with pressure gradients (PGs) has been performed for inflow Mach numbers of 0.5 and 2.0. All cases are computed with smooth PGs for both favourable and adverse PG distributions (FPG, APG) and thus are akin to experiments using a reflected-wave set-up. The equilibrium character allows for a systematic comparison between sub- and supersonic cases, enabling the isolation of pure PG effects from Mach-number effects and thus an investigation of the validity of common compressibility transformations for compressible PG TBLs. It turned out that the kinematic Rotta–Clauser parameter $\unicode[STIX]{x1D6FD}_{K}$ calculated using the incompressible form of the boundary-layer displacement thickness as length scale is the appropriate similarity parameter to compare both sub- and supersonic cases. Whereas the subsonic APG cases show trends known from incompressible flow, the interpretation of the supersonic PG cases is intricate. Both sub- and supersonic regions exist in the boundary layer, which counteract in their spatial evolution. The boundary-layer thickness $\unicode[STIX]{x1D6FF}_{99}$ and the skin-friction coefficient $c_{f}$, for instance, are therefore in a comparable range for all compressible APG cases. The evaluation of local non-dimensionalized total and turbulent shear stresses shows an almost identical behaviour for both sub- and supersonic cases characterized by similar $\unicode[STIX]{x1D6FD}_{K}$, which indicates the (approximate) validity of Morkovin’s scaling/hypothesis also for compressible PG TBLs. Likewise, the local non-dimensionalized distributions of the mean-flow pressure and the pressure fluctuations are virtually invariant to the local Mach number for same $\unicode[STIX]{x1D6FD}_{K}$-cases. In the inner layer, the van Driest transformation collapses compressible mean-flow data of the streamwise velocity component well into their nearly incompressible counterparts with the same $\unicode[STIX]{x1D6FD}_{K}$. However, noticeable differences can be observed in the wake region of the velocity profiles, depending on the strength of the PG. For both sub- and supersonic cases the recovery factor was found to be significantly decreased by APGs and increased by FPGs, but also to remain virtually constant in regions of approximated equilibrium.


Fractals ◽  
2019 ◽  
Vol 27 (02) ◽  
pp. 1950016 ◽  
Author(s):  
JIN CHEN ◽  
LONG HE ◽  
QIN WANG

The eccentric distance sum is concerned with complex networks. To obtain the asymptotic formula of eccentric distance sum on growing Sierpiński networks, we study some nonlinear integral in terms of self-similar measure on the Sierpiński gasket and use the self-similarity of distance and measure to obtain the exact value of this integral.


2016 ◽  
Vol 26 (04) ◽  
pp. 1650065 ◽  
Author(s):  
Mahsa Vaghefi ◽  
Ali Motie Nasrabadi ◽  
Seyed Mohammad Reza Hashemi Golpayegani ◽  
Mohammad Reza Mohammadi ◽  
Shahriar Gharibzadeh

Detrended Fluctuation Analysis (DFA) is a scaling analysis method that can identify intrinsic self-similarity in any nonstationary time series. In contrast, Wavelet Transform (WT) method is widely used to investigate the self-similar processes, as the self-similarity properties exist within the subbands. Therefore, a combination of these two approaches, DFA and WPT, is promising for rigorous investigation of such a system. In this paper a new methodology, so-called wavelet DFA, is introduced and interpreted to evaluate this idea. This approach, further than identifying self-similarity properties, enable us to detect and capture the chaos-periodic transitions, band merging, and internal crisis in systems that become chaotic through period-doubling phenomena. Changes of wavelet DFA exponent have been compared with that of Lyapunov and DFA through Logistic, Sine, Gaussian, Cubic, and Quartic Maps. Furthermore, the potential capabilities of this new exponent have been presented.


2019 ◽  
Author(s):  
Arslan Salim Dar ◽  
Jacob Berg ◽  
Niels Troldborg ◽  
Edward G. Patton

Abstract. We perform large-eddy simulation of flow in complex terrain under neutral atmospheric stratification. We study the self-similar behavior of a turbine wake as a function of varying terrain complexity and perform comparison with a flat terrain. By plotting normalized velocity deficit profiles in different complex terrain cases, we verify that self-similarity is preserved as we move downstream from the turbine. We find that this preservation is valid for a shorter distance downstream compared to what is observed in flat terrain. A larger spread of the profiles toward the tails due to varying levels of shear is also observed.


Sign in / Sign up

Export Citation Format

Share Document