Normal stresses in concentrated non-Brownian suspensions

2013 ◽  
Vol 715 ◽  
pp. 239-272 ◽  
Author(s):  
T. Dbouk ◽  
L. Lobry ◽  
E. Lemaire

AbstractWe present an experimental approach used to measure both normal stress differences and the particle phase contribution to the normal stresses in suspensions of non-Brownian hard spheres. The methodology consists of measuring the radial profile of the normal stress along the velocity gradient direction in a torsional flow between two parallel discs. The values of the first and the second normal stress differences, ${N}_{1} $ and ${N}_{2} $, are deduced from the measurement of the slope and of the origin ordinate. The measurements are carried out for a wide range of particle volume fractions (between 0.2 and 0.5). As expected, ${N}_{2} $ is measured to be negative but ${N}_{1} $ is found to be positive. We discuss the validity of the method and present numerous tests that have been carried out in order to validate our results. The experimental setup also allows the pore pressure to be measured. Then, subtracting the pore pressure from the total stress, ${\mbrm{\Sigma} }_{\mathbf{22} } $, the contribution of the particles to the normal stress ${ \mbrm{\Sigma} }_{\mathbf{22} }^{\mathbi{p}} $ is obtained. Most of our results compare well with the different experimental and numerical data present in the literature. In particular, our results show that the magnitude of the particle stress tensor component and their dependence on the particle volume fraction used in the suspension model balance proposed by Morris & Boulay (J. Rheol., vol. 43, 1999, p. 1213) are suitable.

2021 ◽  
Vol 8 ◽  
Author(s):  
Jing Zhang ◽  
Jingyu Zhang ◽  
Haoyu Wang ◽  
Hongyang Wei ◽  
Changbing Tang ◽  
...  

A multi-scale finite element method is developed to simulate the irradiation process and postirradiation uniaxial tensile tests for metal-matrix composite fuels with representative volume elements (RVEs). The simulations of irradiation process are implemented under a wide range of burnup levels, with the irradiation effects on the mechanical constitutive relations of fuel particles and matrix taken into account comprehensively. The simulation results for the macroscopic postirradiation true stress/strain curves are obtained, excluding the irradiation-induced macroscopic deformations. The effects of particle fission density, temperature, and initial particle volume fraction are investigated and analyzed. The research results indicate that 1) a quasi-elastic stage appears during the postirradiation tension, which is mainly induced by the creation of high residual compressive stresses in the particles and matrix after irradiation; 2) with the increase of effective strains, new plastic deformations increase in the particles and matrix to result in the macroscale plastic stage; 3) the macroscale irradiation softening and hardening phenomena appear, which mainly stem from the weakened deformation resistance by the irradiation-induced plastic deformations in the matrix, the enlarged particle volume fraction after irradiation, and the irradiation hardening effects of metal matrix.


2008 ◽  
Vol 597 ◽  
pp. 305-341 ◽  
Author(s):  
ALEXANDER M. LESHANSKY ◽  
JEFFREY F. MORRIS ◽  
JOHN F. BRADY

Collective diffusivity in a suspension of rigid particles in steady linear viscous flows is evaluated by investigating the dynamics of the time correlation of long-wavelength density fluctuations. In the absence of hydrodynamic interactions between suspended particles in a dilute suspension of identical hard spheres, closed-form asymptotic expressions for the collective diffusivity are derived in the limits of low and high Péclet numbers, where the Péclet number ${\it Pe}\,{=}\,\gamdot a^2/D_0$ with $\gamdot$ being the shear rate and D0 = kBT/6πη a is the Stokes–Einstein diffusion coefficient of an isolated sphere of radius a in a fluid of viscosity η. The effect of hydrodynamic interactions is studied in the analytically tractable case of weakly sheared (Pe ≪ 1) suspensions.For strongly sheared suspensions, i.e. at high Pe, in the absence of hydrodynamics the collective diffusivity Dc = 6 Ds∞, where Ds∞ is the long-time self-diffusivity and both scale as $\phi \gamdot a^2$, where φ is the particle volume fraction. For weakly sheared suspensions it is shown that the leading dependence of collective diffusivity on the imposed flow is proportional to D0 φPeÊ, where Ê is the rate-of-strain tensor scaled by $\gamdot$, regardless of whether particles interact hydrodynamically. When hydrodynamic interactions are considered, however, correlations of hydrodynamic velocity fluctuations yield a weakly singular logarithmic dependence of the cross-gradient-diffusivity on k at leading order as ak → 0 with k being the wavenumber of the density fluctuation. The diagonal components of the collective diffusivity tensor, both with and without hydrodynamic interactions, are of O(φPe2), quadratic in the imposed flow, and finite at k = 0.At moderate particle volume fractions, 0.10 ≤ φ ≤ 0.35, Brownian Dynamics (BD) numerical simulations in which there are no hydrodynamic interactions are performed and the transverse collective diffusivity in simple shear flow is determined via time evolution of the dynamic structure factor. The BD simulation results compare well with the derived asymptotic estimates. A comparison of the high-Pe BD simulation results with available experimental data on collective diffusivity in non-Brownian sheared suspensions shows a good qualitative agreement, though hydrodynamic interactions prove to be important at moderate concentrations.


2011 ◽  
Vol 686 ◽  
pp. 5-25 ◽  
Author(s):  
François Boyer ◽  
Olivier Pouliquen ◽  
Élisabeth Guazzelli

AbstractNormal stress differences are measured in dense suspensions of neutrally buoyant non-Brownian spheres dispersed in a Newtonian fluid. Rotating-rod rheometry is used to characterize the suspension normal stresses which are responsible for a rod-dipping phenomenon. These normal stress differences are seen to strongly increase above a volume fraction of approximately 22 %. During the course of the experiments, a new time-dependent behaviour is also observed: the dip is filled with increasing times. This time evolution is found to be related to particle migration from regions of high shear rate to regions of low shear rate. The behaviour is compared with the predictions of a suspension balance model in which the particle migration flux is related to the normal stresses of the suspension.


2019 ◽  
Vol 86 (8) ◽  
Author(s):  
Eilis Rosenbaum ◽  
Mehrdad Massoudi ◽  
Kaushik Dayal

The size and distribution of particles suspended within a fluid influence the rheology of the suspension, as well as strength and other mechanical properties if the fluid eventually solidifies. An important motivating example of current interest is foamed cements used for carbon storage and oil and gas wellbore completion. In these applications, it is desired that the suspended particles maintain dispersion during flow and do not coalesce or cluster. This paper compares the role of mono- against polydispersity in the particle clustering process. The propensity of hard spherical particles in a suspension to transition from a random configuration to an ordered configuration, or to form localized structures of particles, due to flow is investigated by comparing simulations of monodisperse and polydisperse suspensions using Stokesian dynamics. The calculations examine the role of the polydispersity on particles rearrangements and structuring of particles due to flow and the effects of the particle size distribution on the suspension viscosity. A key finding of this work is that a small level of polydispersity in the particle sizes helps to reduce localized structuring of the particles in the suspension. A suspension of monodisperse hard spheres forms structures at a particle volume fraction of approximately 47% under shear, but a 47% volume fraction of polydisperse particles in suspension does not form these structures.


2015 ◽  
Vol 19 (1) ◽  
pp. 109-118 ◽  
Author(s):  
Jahar Sarkar

The theoretical analyses of the double-tube gas cooler in transcritical carbon dioxide refrigeration cycle have been performed to study the performance improvement of gas cooler as well as CO2 cycle using Al2O3, TiO2, CuO and Cu nanofluids as coolants. Effects of various operating parameters (nanofluid inlet temperature and mass flow rate, CO2 pressure and particle volume fraction) are studied as well. Use of nanofluid as coolant in double-tube gas cooler of CO2 cycle improves the gas cooler effectiveness, cooling capacity and COP without penalty of pumping power. The CO2 cycle yields best performance using Al2O3-H2O as a coolant in double-tube gas cooler followed by TiO2-H2O, CuO-H2O and Cu-H2O. The maximum cooling COP improvement of transcritical CO2 cycle for Al2O3-H2O is 25.4%, whereas that for TiO2-H2O is 23.8%, for CuO-H2O is 20.2% and for Cu-H2O is 16.2% for the given ranges of study. Study shows that the nanofluid may effectively use as coolant in double-tube gas cooler to improve the performance of transcritical CO2 refrigeration cycle.


2021 ◽  
Author(s):  
Yosephus Ardean Kurnianto Prayitno ◽  
Tong Zhao ◽  
Yoshiyuki Iso ◽  
Masahiro Takei

1999 ◽  
Author(s):  
J. W. Gao ◽  
S. J. White ◽  
C. Y. Wang

Abstract A combined experimental and numerical investigation of the solidification process during gravity casting of functionally graded materials (FGMs) is conducted. Focus is placed on the interplay between the freezing front propagation and particle sedimentation. Experiments were performed in a rectangular ingot using pure substances as the matrix and glass beads as the particle phase. The time evolutions of local particle volume fractions were measured by bifurcated fiber optical probes working in the reflection mode. The effects of various processing parameters were explored. It is found that there exists a particle-free zone in the top portion of the solidified ingot, followed by a graded particle distribution region towards the bottom. Higher superheat results in slower solidification and hence a thicker particle-free zone and a higher particle concentration near the bottom. The higher initial particle volume fraction leads to a thinner particle-free region. Lower cooling temperatures suppress particle settling. A one-dimensional solidification model was also developed, and the model equations were solved numerically using a fixed-grid, finite-volume method. The model was then validated against the experimental results, and the validated computer code was used as a tool for efficient computational prototyping of an Al/SiC FGM.


2021 ◽  
Author(s):  
Bertrand Rollin ◽  
Frederick Ouellet ◽  
Bradford Durant ◽  
Rahul Babu Koneru ◽  
S. Balachandar

Abstract We study the interaction of a planar air shock with a perturbed, monodispersed, particle curtain using point-particle simulations. In this Eulerian-Lagrangian approach, equations of motion are solved to track the position, momentum, and energy of the computational particles while the carrier fluid flow is computed in the Eulerian frame of reference. In contrast with many Shock-Driven Multiphase Instability (SDMI) studies, we investigate a configuration with an initially high particle volume fraction, which produces a strongly two-way coupled flow in the early moments following the shock-solid phase interaction. In the present study, the curtain is about 4 mm in thickness and has a peak volume fraction of about 26%. It is composed of spherical particles of d = 115μm in diameter and a density of 2500 kg.m−3, thus replicating glass particles commonly used in multiphase shock tube experiments or multiphase explosive experiments. We characterize both the evolution of the perturbed particle curtain and the gas initially trapped inside the particle curtain in our planar three-dimensional numerical shock tube. Control parameters such as the shock strength, the particle curtain perturbation wavelength and particle volume fraction peak-to-trough amplitude are varied to quantify their influence on the evolution of the particle cloud and the initially trapped gas. We also analyze the vortical motion in the flow field. Our results indicate that the shock strength is the primary contributor to the cloud particle width. Also, a classic Richtmyer-Meshkov instability mixes the gas initially trapped in the particle curtain and the surrounding gas. Finally, we observe that the particle cloud contribute to the formation of longitudinal vortices in the downstream flow.


Sign in / Sign up

Export Citation Format

Share Document