scholarly journals Effects of fluctuating energy input on the small scales in turbulence

2013 ◽  
Vol 737 ◽  
pp. 527-551 ◽  
Author(s):  
Chen-Chi Chien ◽  
Daniel B. Blum ◽  
Greg A. Voth

AbstractIn the standard cascade picture of three-dimensional turbulent fluid flows, energy is input at a constant rate at large scales. Energy is then transferred to smaller scales by an intermittent process that has been the focus of a vast literature. However, the energy input at large scales is not constant in most real turbulent flows. We explore the signatures of these fluctuations of large-scale energy input on small-scale turbulence statistics. Measurements were made in a flow between oscillating grids, with ${R}_{\lambda } $ up to 262, in which temporal variations in the large-scale energy input can be introduced by modulating the oscillating grid frequency. We find that the Kolmogorov constant for second-order longitudinal structure functions depends on the magnitude of the fluctuations in the large-scale energy input. We can quantitatively predict the measured change with a model based on Kolmogorov’s refined similarity theory. The effects of fluctuations of the energy input can also be observed using structure functions conditioned on the instantaneous large-scale velocity. A linear parametrization using the curvature of the conditional structure functions provides a fairly good match with the measured changes in the Kolmogorov constant. Conditional structure functions are found to provide a more sensitive measure of the presence of fluctuations in the large-scale energy input than inertial range scaling coefficients.

1962 ◽  
Vol 13 (1) ◽  
pp. 77-81 ◽  
Author(s):  
A. M. Oboukhov

The spectrum of atmospheric turbulence is very broad by comparison with spectra in wind tunnels. We introduce the notion of small-scale and large-scale turbulence. Small-scale turbulence consists of a set of disturbances, the scales of which do not exceed the distance to the wall and for which the hypothesis of three-dimensional isotropy is valid in a certain rough approximation. Large-scale turbulence is essentially anisotropic; the horizontal scale in the atmosphere is much larger than the vertical one, the latter being confined to a certain characteristic height H. The horizontal scale varies widely according to the external conditions and characteristics of the medium.


This paper reviews how Kolmogorov postulated for the first time the existence of a steady statistical state for small-scale turbulence, and its defining parameters of dissipation rate and kinematic viscosity. Thence he made quantitative predictions of the statistics by extending previous methods of dimensional scaling to multiscale random processes. We present theoretical arguments and experimental evidence to indicate when the small-scale motions might tend to a universal form (paradoxically not necessarily in uniform flows when the large scales are gaussian and isotropic), and discuss the implications for the kinematics and dynamics of the fact that there must be singularities in the velocity field associated with the - 5/3 inertial range spectrum. These may be particular forms of eddy or ‘eigenstructure’ such as spiral vortices, which may not be unique to turbulent flows. Also, they tend to lead to the notable spiral contours of scalars in turbulence, whose self-similar structure enables the ‘box-counting’ technique to be used to measure the ‘capacity’ D K of the contours themselves or of their intersections with lines, D' K . Although the capacity, a term invented by Kolmogorov (and studied thoroughly by Kolmogorov & Tikhomirov), is like the exponent 2 p of a spectrum in being a measure of the distribution of length scales ( D' K being related to 2 p in the limit of very high Reynolds numbers), the capacity is also different in that experimentally it can be evaluated at local regions within a flow and at lower values of the Reynolds number. Thus Kolmogorov & Tikhomirov provide the basis for a more widely applicable measure of the self-similar structure of turbulence. Finally, we also review how Kolmogorov’s concept of the universal spatial structure of the small scales, together with appropriate additional physical hypotheses, enables other aspects of turbulence to be understood at these scales; in particular the general forms of the temporal statistics such as the high-frequency (inertial range) spectra in eulerian and lagrangian frames of reference, and the perturbations to the small scales caused by non-isotropic, non-gaussian and inhomogeneous large-scale motions.


2007 ◽  
Vol 64 (10) ◽  
pp. 3652-3665 ◽  
Author(s):  
Brian F. Farrell ◽  
Petros J. Ioannou

Abstract Turbulent flows are often observed to be organized into large-spatial-scale jets such as the familiar zonal jets in the upper levels of the Jovian atmosphere. These relatively steady large-scale jets are not forced coherently but are maintained by the much smaller spatial- and temporal-scale turbulence with which they coexist. The turbulence maintaining the jets may arise from exogenous sources such as small-scale convection or from endogenous sources such as eddy generation associated with baroclinic development processes within the jet itself. Recently a comprehensive theory for the interaction of jets with turbulence has been developed called stochastic structural stability theory (SSST). In this work SSST is used to study the formation of multiple jets in barotropic turbulence in order to understand the physical mechanism producing and maintaining these jets and, specifically, to predict the jet amplitude, structure, and spacing. These jets are shown to be maintained by the continuous spectrum of shear waves and to be organized into stable attracting states in the mutually adjusted mean flow and turbulence fields. The jet structure, amplitude, and spacing and the turbulence level required for emergence of jets can be inferred from these equilibria. For weak but supercritical turbulence levels the jet scale is determined by the most unstable mode of the SSST system and the amplitude of the jets at equilibrium is determined by the balance between eddy forcing and mean flow dissipation. At stronger turbulence levels the jet amplitude saturates with jet spacing and amplitude satisfying the Rayleigh–Kuo stability condition that implies the Rhines scale. Equilibrium jets obtained with the SSST system are in remarkable agreement with equilibrium jets obtained in simulations of fully developed β-plane turbulence.


Author(s):  
S. Karmakar ◽  
A. Kushari

Re-circulating flows are established in dump combustors at the dump plane due to the sudden expansion. However, given enough length, the separated flow at the dump plane attaches itself inside the combustor and a fully developed, non-circulating, attached flow field is established. But, if the length of the combustor is less than the free-stream reattachment length, then the flow does not re-attach inside the combustor. Instead, a portion of the flow is reflected from the exit section, causing stronger re-circulation that modifies the flow structure inside the combustor. This paper describes an experimental study of turbulent flow field inside a dump combustor for a range of flow Reynolds numbers. The focus of this effort is to study the interaction between the flow re-circulation and the large-scale turbulence. Detailed measurements of the wall pressure transients were taken using strain-gage pressure sensors. The fluctuating component of the pressure was isolated and analyzed. The signals were analyzed using FFT, Auto-Correlation and Cross-correlation to distinguish the re-circulating flow and the large-scale turbulence. The re-circulating flow, identified by low frequency fluctuations in pressure (∼ 0.5 Hz), was seen to be strongest inside the combustor almost half way through the combustor length. At the same time, the large-scale turbulence intensity (identified by high frequency fluctuations in the range of 460 Hz) level is seen to be lower inside the combustor than in the incoming pipe. This can be attributed to the turbulence cascading due to the re-circulating flow, which increases the small-scale energy and reduces the large-scale energy. These results show turbulence modulation due to re-circulating flow and can have far reaching applications in swirling turbulent flows.


2019 ◽  
Vol 867 ◽  
pp. 45-76 ◽  
Author(s):  
V. A. Sabelnikov ◽  
A. N. Lipatnikov ◽  
S. Nishiki ◽  
T. Hasegawa

The second-order structure functions (SFs) of the velocity field, which characterize the velocity difference at two points, are widely used in research into non-reacting turbulent flows. In the present paper, the approach is extended in order to study the influence of combustion-induced thermal expansion on turbulent flow within a premixed flame brush. For this purpose, SFs conditioned to various combinations of mixture states at two different points (reactant–reactant, reactant–product, product–product, etc.) are introduced in the paper and a relevant exact transport equation is derived in the appendix. Subsequently, in order to demonstrate the capabilities of the newly developed approach for advancing the understanding of turbulent reacting flows, the conditioned SFs are extracted from three-dimensional (3-D) direct numerical simulation data obtained from two statistically 1-D planar, fully developed, weakly turbulent, premixed, single-step-chemistry flames characterized by significantly different (7.53 and 2.50) density ratios, with all other things being approximately equal. Obtained results show that the conditioned SFs differ significantly from standard mean SFs and convey a large amount of important information on various local phenomena that stem from the influence of combustion-induced thermal expansion on turbulent flow. In particular, the conditioned SFs not only (i) indicate a number of already known local phenomena discussed in the paper, but also (ii) reveal a less recognized phenomenon such as substantial influence of combustion-induced thermal expansion on turbulence in constant-density unburned reactants and even (iii) allow us to detect a new phenomenon such as the appearance of strong local velocity perturbations (shear layers) within flamelets. Moreover, SFs conditioned to heat-release zones indicate a highly anisotropic influence of combustion-induced thermal expansion on the evolution of small-scale two-point velocity differences within flamelets, with the effects being opposite (an increase or a decrease) for different components of the local velocity vector.


We consider the hydrodynamical problem of a general three-dimensional smooth deformable body moving in a perfect fluid, which undergoes arbitrary continuous temporal variations in its shape. Special attention is payed to the phenomena of selfpropulsion (translation and rotation) of such a shape and reference is made to the dynamics of non-spherical deformable bubbles, cavities and drops. Some distinctive cases, in which the method can be applied to impulsively started highly-vibrating rigid surfaces, are also presented. The Lagally theorem for deformable surfaces, is applied to determine the induced velocity of self-propulsion. The general deformation is assumed to consist of a large scale volume-mode and superposed small scale shapemodes. The time-averaging procedure is introduced and the effect of persistent self-propulsion is shown to be generated as a result of nonlinear interactions between these modes, which must preserve certain skew-symmetric and phase-difference properties. It is proven that, as a result of perfect symmetry, a spherical shape is a degenerate and an inefficient self-propulsor. The results are demonstrated for prolate (oblate) spheroidal shapes and simplified expressions are obtained as limiting cases for spherical, rod-like (slender) and circular disc shapes.


2019 ◽  
Vol 878 ◽  
pp. 306-323 ◽  
Author(s):  
Bernat Font Garcia ◽  
Gabriel D. Weymouth ◽  
Vinh-Tan Nguyen ◽  
Owen R. Tutty

Turbulent flow evolution and energy cascades are significantly different in two-dimensional (2-D) and three-dimensional (3-D) flows. Studies have investigated these differences in obstacle-free turbulent flows, but solid boundaries have an important impact on the cross-over from 3-D to 2-D turbulence dynamics. In this work, we investigate the span effect on the turbulence nature of flow past a circular cylinder at $Re=10\,000$. It is found that even for highly anisotropic geometries, 3-D small-scale structures detach from the walls. Additionally, the natural large-scale rotation of the Kármán vortices rapidly two-dimensionalise those structures if the span is 50 % of the diameter or less. We show this is linked to the span being shorter than the Mode B instability wavelength. The conflicting 3-D small-scale structures and 2-D Kármán vortices result in 2-D and 3-D turbulence dynamics which can coexist at certain locations of the wake depending on the domain geometric anisotropy.


1989 ◽  
Vol 203 ◽  
pp. 425-448 ◽  
Author(s):  
Jin Tso ◽  
Fazle Hussain

An experiment has been conducted to study the occurrence, configuration and dynamics of large-scale coherent vortical motions in the fully developed region of a turbulent axisymmetric jet. The key idea is to use vorticity signals from a spatial grid to detect and sample large-scale vortical structures and then use the (smoothed) vorticity peaks of spatial vorticity patterns to align and ensemble average successive realizations to determine structure configuration and dynamics. Measurements were made in an air jet at ReD = 69000 by employing a radial rake of seven × -wires to obtain the azimuthal vorticity map. Two additional conditioning probes were placed ± 90° away from the rake to determine the three-dimensional phase and hence the structure configuration. Structures with axisymmetric, helical and double helical configurations have been educed. Among them, the helical structures are far more dominant than the others, and the jet dynamics are thus discussed in terms of these helical structures. Helical structures move radially outward as they advect downstream. This radial movement, in conjunction with simultaneous local ejection of turbulent fluid and subsequent entrainment of the ejected fluid with ambient fluid, appears to be a major means of jet spreading. The shear strain rate is strong on the downstream side of the structure, causing intense small-scale turbulence production and mixing there.


2019 ◽  
Vol 4 (12) ◽  
Author(s):  
C. Marchioli ◽  
H. Bhatia ◽  
G. Sardina ◽  
L. Brandt ◽  
A. Soldati

2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


Sign in / Sign up

Export Citation Format

Share Document