scholarly journals Structure and Spacing of Jets in Barotropic Turbulence

2007 ◽  
Vol 64 (10) ◽  
pp. 3652-3665 ◽  
Author(s):  
Brian F. Farrell ◽  
Petros J. Ioannou

Abstract Turbulent flows are often observed to be organized into large-spatial-scale jets such as the familiar zonal jets in the upper levels of the Jovian atmosphere. These relatively steady large-scale jets are not forced coherently but are maintained by the much smaller spatial- and temporal-scale turbulence with which they coexist. The turbulence maintaining the jets may arise from exogenous sources such as small-scale convection or from endogenous sources such as eddy generation associated with baroclinic development processes within the jet itself. Recently a comprehensive theory for the interaction of jets with turbulence has been developed called stochastic structural stability theory (SSST). In this work SSST is used to study the formation of multiple jets in barotropic turbulence in order to understand the physical mechanism producing and maintaining these jets and, specifically, to predict the jet amplitude, structure, and spacing. These jets are shown to be maintained by the continuous spectrum of shear waves and to be organized into stable attracting states in the mutually adjusted mean flow and turbulence fields. The jet structure, amplitude, and spacing and the turbulence level required for emergence of jets can be inferred from these equilibria. For weak but supercritical turbulence levels the jet scale is determined by the most unstable mode of the SSST system and the amplitude of the jets at equilibrium is determined by the balance between eddy forcing and mean flow dissipation. At stronger turbulence levels the jet amplitude saturates with jet spacing and amplitude satisfying the Rayleigh–Kuo stability condition that implies the Rhines scale. Equilibrium jets obtained with the SSST system are in remarkable agreement with equilibrium jets obtained in simulations of fully developed β-plane turbulence.

This paper reviews how Kolmogorov postulated for the first time the existence of a steady statistical state for small-scale turbulence, and its defining parameters of dissipation rate and kinematic viscosity. Thence he made quantitative predictions of the statistics by extending previous methods of dimensional scaling to multiscale random processes. We present theoretical arguments and experimental evidence to indicate when the small-scale motions might tend to a universal form (paradoxically not necessarily in uniform flows when the large scales are gaussian and isotropic), and discuss the implications for the kinematics and dynamics of the fact that there must be singularities in the velocity field associated with the - 5/3 inertial range spectrum. These may be particular forms of eddy or ‘eigenstructure’ such as spiral vortices, which may not be unique to turbulent flows. Also, they tend to lead to the notable spiral contours of scalars in turbulence, whose self-similar structure enables the ‘box-counting’ technique to be used to measure the ‘capacity’ D K of the contours themselves or of their intersections with lines, D' K . Although the capacity, a term invented by Kolmogorov (and studied thoroughly by Kolmogorov & Tikhomirov), is like the exponent 2 p of a spectrum in being a measure of the distribution of length scales ( D' K being related to 2 p in the limit of very high Reynolds numbers), the capacity is also different in that experimentally it can be evaluated at local regions within a flow and at lower values of the Reynolds number. Thus Kolmogorov & Tikhomirov provide the basis for a more widely applicable measure of the self-similar structure of turbulence. Finally, we also review how Kolmogorov’s concept of the universal spatial structure of the small scales, together with appropriate additional physical hypotheses, enables other aspects of turbulence to be understood at these scales; in particular the general forms of the temporal statistics such as the high-frequency (inertial range) spectra in eulerian and lagrangian frames of reference, and the perturbations to the small scales caused by non-isotropic, non-gaussian and inhomogeneous large-scale motions.


1968 ◽  
Vol 32 (4) ◽  
pp. 765-778 ◽  
Author(s):  
H. G. Davies ◽  
J. E. Ffowcs Williams

The paper deals with the problem of estimating the sound field generated by a limited region of turbulence in an infinitely long, straight, hard-walled pipe. The field is analysed in a co-ordinate system moving with the assumed uniform mean flow, and the possibility of eddy convection relative to that reference system is considered. Large-scale turbulence is shown to induce plane acoustic waves of intensity proportional to the sixth power of flow velocity. The same is true of small-scale turbulence of low characteristic frequency. In both cases convective effects increase the acoustic output and distribute the bulk of the energy in a mode propagating upstream against the mean flow. Small-scale turbulence of higher frequency excites more modes, the sound increasing with very nearly the eighth power of velocity (U7.7) as soon as the second mode is excited. In the limit, when more than about 20 modes are excited, the energy output is unaffected by the constraint of the pipe walls, increasing with the eighth power of velocity, and being substantially amplified by convective motion.


2016 ◽  
Vol 73 (5) ◽  
pp. 2229-2253 ◽  
Author(s):  
Navid C. Constantinou ◽  
Brian F. Farrell ◽  
Petros J. Ioannou

Abstract Jets coexist with planetary-scale waves in the turbulence of planetary atmospheres. The coherent component of these structures arises from cooperative interaction between the coherent structures and the incoherent small-scale turbulence in which they are embedded. It follows that theoretical understanding of the dynamics of jets and planetary-scale waves requires adopting the perspective of statistical state dynamics (SSD), which comprises the dynamics of the interaction between coherent and incoherent components in the turbulent state. In this work, the stochastic structural stability theory (S3T) implementation of SSD for barotropic beta-plane turbulence is used to develop a theory for the jet–wave coexistence regime by separating the coherent motions consisting of the zonal jets together with a selection of large-scale waves from the smaller-scale motions that constitute the incoherent component. It is found that mean flow–turbulence interaction gives rise to jets that coexist with large-scale coherent waves in a synergistic manner. Large-scale waves that would exist only as damped modes in the laminar jet are found to be transformed into exponentially growing waves by interaction with the incoherent small-scale turbulence, which results in a change in the mode structure, allowing the mode to tap the energy of the mean jet. This mechanism of destabilization differs fundamentally and serves to augment the more familiar S3T instabilities in which jets and waves arise from homogeneous turbulence with the energy source exclusively from the incoherent eddy field and provides further insight into the cooperative dynamics of the jet–wave coexistence regime in planetary turbulence.


2015 ◽  
Vol 787 ◽  
pp. 396-439 ◽  
Author(s):  
Xuesong Wu ◽  
Xiuling Zhuang

Fully developed turbulent free shear layers exhibit a high degree of order, characterized by large-scale coherent structures in the form of spanwise vortex rollers. Extensive experimental investigations show that such organized motions bear remarkable resemblance to instability waves, and their main characteristics, including the length scales, propagation speeds and transverse structures, are reasonably well predicted by linear stability analysis of the mean flow. In this paper, we present a mathematical theory to describe the nonlinear dynamics of coherent structures. The formulation is based on the triple decomposition of the instantaneous flow into a mean field, coherent fluctuations and small-scale turbulence but with the mean-flow distortion induced by nonlinear interactions of coherent fluctuations being treated as part of the organized motion. The system is closed by employing a gradient type of model for the time- and phase-averaged Reynolds stresses of fine-scale turbulence. In the high-Reynolds-number limit, the nonlinear non-equilibrium critical-layer theory for laminar-flow instabilities is adapted to turbulent shear layers by accounting for (1) the enhanced non-parallelism associated with fast spreading of the mean flow, and (2) the influence of small-scale turbulence on coherent structures. The combination of these factors with nonlinearity leads to an interesting evolution system, consisting of coupled amplitude and vorticity equations, in which non-parallelism contributes the so-called translating critical-layer effect. Numerical solutions of the evolution system capture vortex roll-up, which is the hallmark of a turbulent mixing layer, and the predicted amplitude development mimics the qualitative feature of oscillatory saturation that has been observed in a number of experiments. A fair degree of quantitative agreement is obtained with one set of experimental data.


1983 ◽  
Vol 137 ◽  
pp. 331-345 ◽  
Author(s):  
Y. Nakamura ◽  
Y. Ohya

There are two main effects of turbulence on the mean flow past rods of square cross-section aligned with the approaching flow. Small-scale turbulence increases the growth rate of the shear layer, while large-scale turbulence enhances the roll-up of the shear layer. The consequences of these depend on the length of a square rod. The mean base pressure of a square rod varies considerably with turbulence intensity and scale as well as with its length.


2013 ◽  
Vol 737 ◽  
pp. 527-551 ◽  
Author(s):  
Chen-Chi Chien ◽  
Daniel B. Blum ◽  
Greg A. Voth

AbstractIn the standard cascade picture of three-dimensional turbulent fluid flows, energy is input at a constant rate at large scales. Energy is then transferred to smaller scales by an intermittent process that has been the focus of a vast literature. However, the energy input at large scales is not constant in most real turbulent flows. We explore the signatures of these fluctuations of large-scale energy input on small-scale turbulence statistics. Measurements were made in a flow between oscillating grids, with ${R}_{\lambda } $ up to 262, in which temporal variations in the large-scale energy input can be introduced by modulating the oscillating grid frequency. We find that the Kolmogorov constant for second-order longitudinal structure functions depends on the magnitude of the fluctuations in the large-scale energy input. We can quantitatively predict the measured change with a model based on Kolmogorov’s refined similarity theory. The effects of fluctuations of the energy input can also be observed using structure functions conditioned on the instantaneous large-scale velocity. A linear parametrization using the curvature of the conditional structure functions provides a fairly good match with the measured changes in the Kolmogorov constant. Conditional structure functions are found to provide a more sensitive measure of the presence of fluctuations in the large-scale energy input than inertial range scaling coefficients.


2006 ◽  
Vol 13 (1) ◽  
pp. 83-98 ◽  
Author(s):  
B. Galperin ◽  
S. Sukoriansky ◽  
N. Dikovskaya ◽  
P. L. Read ◽  
Y. H. Yamazaki ◽  
...  

Abstract. Numerical studies of small-scale forced, two-dimensional turbulent flows on the surface of a rotating sphere have revealed strong large-scale anisotropization that culminates in the emergence of quasi-steady sets of alternating zonal jets, or zonation. The kinetic energy spectrum of such flows also becomes strongly anisotropic. For the zonal modes, a steep spectral distribution, E(n)=CZ (Ω/R)2 n-5, is established, where CZ=O(1) is a non-dimensional coefficient, Ω is the angular velocity, and R is the radius of the sphere, respectively. For other, non-zonal modes, the classical, Kolmogorov-Batchelor-Kraichnan, spectral law is preserved. This flow regime, referred to as a zonostrophic regime, appears to have wide applicability to large-scale planetary and terrestrial circulations as long as those are characterized by strong rotation, vertically stable stratification and small Burger numbers. The well-known manifestations of this regime are the banded disks of the outer planets of our Solar System. Relatively less known examples are systems of narrow, subsurface, alternating zonal jets throughout all major oceans discovered in state-of-the-art, eddy-permitting simulations of the general oceanic circulation. Furthermore, laboratory experiments recently conducted using the Coriolis turntable have basically confirmed that the lateral gradient of ''planetary vorticity'' (emulated via the topographic β-effect) is the primary cause of the zonation and that the latter is entwined with the development of the strongly anisotropic kinetic energy spectrum that tends to attain the same zonal and non-zonal distributions, −5 and , respectively, in both the slope and the magnitude, as the corresponding spectra in other environmental conditions. The non-dimensional coefficient CZ in the −5 spectral law appears to be invariant, , in a variety of simulated and natural flows. This paper provides a brief review of the zonostrophic regime. The review includes the discussion of the physical nature, basic mechanisms, scaling laws and universality of this regime. A parameter range conducive to its establishment is identified, and collation of laboratory and naturally occurring flows is presented through which the zonostrophic regime manifests itself in the real world.


Author(s):  
S. Karmakar ◽  
A. Kushari

Re-circulating flows are established in dump combustors at the dump plane due to the sudden expansion. However, given enough length, the separated flow at the dump plane attaches itself inside the combustor and a fully developed, non-circulating, attached flow field is established. But, if the length of the combustor is less than the free-stream reattachment length, then the flow does not re-attach inside the combustor. Instead, a portion of the flow is reflected from the exit section, causing stronger re-circulation that modifies the flow structure inside the combustor. This paper describes an experimental study of turbulent flow field inside a dump combustor for a range of flow Reynolds numbers. The focus of this effort is to study the interaction between the flow re-circulation and the large-scale turbulence. Detailed measurements of the wall pressure transients were taken using strain-gage pressure sensors. The fluctuating component of the pressure was isolated and analyzed. The signals were analyzed using FFT, Auto-Correlation and Cross-correlation to distinguish the re-circulating flow and the large-scale turbulence. The re-circulating flow, identified by low frequency fluctuations in pressure (∼ 0.5 Hz), was seen to be strongest inside the combustor almost half way through the combustor length. At the same time, the large-scale turbulence intensity (identified by high frequency fluctuations in the range of 460 Hz) level is seen to be lower inside the combustor than in the incoming pipe. This can be attributed to the turbulence cascading due to the re-circulating flow, which increases the small-scale energy and reduces the large-scale energy. These results show turbulence modulation due to re-circulating flow and can have far reaching applications in swirling turbulent flows.


2019 ◽  
Vol 4 (12) ◽  
Author(s):  
C. Marchioli ◽  
H. Bhatia ◽  
G. Sardina ◽  
L. Brandt ◽  
A. Soldati

2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


Sign in / Sign up

Export Citation Format

Share Document