scholarly journals Flow control over an airfoil using virtual Gurney flaps

2015 ◽  
Vol 767 ◽  
pp. 595-626 ◽  
Author(s):  
Li-Hao Feng ◽  
Kwing-So Choi ◽  
Jin-Jun Wang

AbstractFlow control over a NACA 0012 airfoil is carried out using a dielectric barrier discharge (DBD) plasma actuator at the Reynolds number of 20 000. Here, the plasma actuator is placed over the pressure (lower) side of the airfoil near the trailing edge, which produces a wall jet against the free stream. This reverse flow creates a quasi-steady recirculation region, reducing the velocity over the pressure side of the airfoil. On the other hand, the air over the suction (upper) side of the airfoil is drawn by the recirculation, increasing its velocity. Measured phase-averaged vorticity and velocity fields also indicate that the recirculation region created by the plasma actuator over the pressure surface modifies the near-wake dynamics. These flow modifications around the airfoil lead to an increase in the lift coefficient, which is similar to the effect of a mechanical Gurney flap. This configuration of DBD plasma actuators, which is investigated for the first time in this study, is therefore called a virtual Gurney flap. The purpose of this investigation is to understand the mechanism of lift enhancement by virtual Gurney flaps by carefully studying the global flow behaviour over the airfoil. First, the recirculation region draws the air from the suction surface around the trailing edge. The upper shear layer then interacts with the opposite-signed shear layer from the pressure surface, creating a stronger vortex shedding from the airfoil. Secondly, the recirculation region created by a DBD plasma actuator over the pressure surface displaces the positive shear layer away from the airfoil, thereby shifting the near-wake region downwards. The virtual Gurney flap also changes the dynamics of laminar separation bubbles and associated vortical structures by accelerating laminar-to-turbulent transition through the Kelvin–Helmholtz instability mechanism. In particular, the separation point and the start of transition are advanced. The reattachment point also moves upstream with plasma control, although it is slightly delayed at a large angle of attack.

2005 ◽  
Vol 127 (6) ◽  
pp. 1085-1094 ◽  
Author(s):  
Alan L. Kastengren ◽  
J. Craig Dutton

The near wake of a blunt-base cylinder at 10° angle-of-attack to a Mach 2.46 free-stream flow is visualized at several locations to study unsteady aspects of its structure. In both side-view and end-view images, the shear layer flapping grows monotonically as the shear layer develops, similar to the trends seen in a corresponding axisymmetric supersonic base flow. The interface convolution, a measure of the tortuousness of the shear layer, peaks for side-view and end-view images during recompression. The high convolution for a septum of fluid seen in the middle of the wake indicates that the septum actively entrains fluid from the recirculation region, which helps to explain the low base pressure for this wake compared to that for a corresponding axisymmetric wake.


2018 ◽  
Vol 30 (9) ◽  
pp. 4141-4154
Author(s):  
Abbas Ebrahimi ◽  
Majid Hajipour ◽  
Kamran Ghamkhar

PurposeThe purpose of this paper is to control flow separation over a NACA 4415 airfoil by applying unsteady forces to the separated shear layers using dielectric barrier discharge (DBD) plasma actuators. This novel flow control method is studied under conditions which the airfoil angle of attack is 18°, and Reynolds number based on chord length is 5.5 × 105.Design/methodology/approachLarge eddy simulation of the turbulent flow is used to capture vortical structures through the airfoil wake. Power spectral density analysis of the baseline flow indicates dominant natural frequencies associated with “shear layer mode” and “wake mode.” The wake mode frequency is used simultaneously to excite separated shear layers at both the upper surface and the trailing edge of the airfoil (dual-position excitation), and it is also used singly to excite the upper surface shear layer (single-position excitation).FindingsBased on the results, actuations manipulate the shear layers instabilities and change the wake patterns considerably. It is revealed that in the single-position excitation case, the vortices shed from the upper surface shear layer are more coherent than the dual-position excitation case. The maximum value of lift coefficient and lift-to-drag ratio is achieved, respectively, by single-position excitation as well as dual-position excitation.Originality/valueThe paper contributes to the understanding and progress of DBD plasma actuators for flow control applications. Further, this research could be a beneficial solution for the promising design of advanced low speed flying vehicles.


2017 ◽  
Vol 31 (32) ◽  
pp. 1850038 ◽  
Author(s):  
Xin Zhang ◽  
Huaxing Li ◽  
Kwing So Choi ◽  
Longfei Song

The structures of a flow field induced by a plasma actuator were investigated experimentally in quiescent air using high-speed Particle Image Velocimetry (PIV) technology. The motivation behind was to figure out the flow control mechanism of the plasma technique. A symmetrical Dielectric Barrier Discharge (DBD) plasma actuator was mounted on the suction side of the SC (2)-0714 supercritical airfoil. The results demonstrated that the plasma jet had some coherent structures in the separated shear layer and these structures were linked to a dominant frequency of [Formula: see text] = 39 Hz when the peak-to-peak voltage of plasma actuator was 9.8 kV. The high speed PIV measurement of the induced airflow suggested that the plasma actuator could excite the flow instabilities which lead to production of the roll-up vortex. Analysis of transient results indicated that the roll-up vortices had the process of formation, movement, merging and breakdown. This could promote the entrainment effect of plasma actuator between the outside airflow and boundary layer flow, which is very important for flow control applications.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 872 ◽  
Author(s):  
Takatoshi Matsubara ◽  
Yoshiki Shima ◽  
Hikaru Aono ◽  
Hitoshi Ishikawa ◽  
Takehiko Segawa

An experimental investigation of active flow control on a three-dimensional (3D) curved surface bluff body was conducted by using a string-type plasma actuator. The 3D bluff body model tested in this study was composed of a quarter sphere and a half cylinder, and the Reynolds number based on the diameter of half cylinder was set at 1.3 × 104. The modulation drive was adopted for flow control, and the control effects of variations in dimensionless burst frequency (fm+) normalized by the width of the model and freestream velocity were studied. Velocity distributions analyzed by particle image velocimetry showed that the recirculation region behind the model shrank due to the flow control. The static pressure distributions on the back surface of the model tended to decrease under any fm+ set in this study, especially in the ranges of 0.40 ≤ fm+ ≤ 0.64. The drag coefficient reached its maximum value under the similar ranges of fm+. Although the aerodynamic wake sharpening was observed due to the flow control, the entrainment of separated flow into the back surface of the model was enhanced. This scenario of wake manipulation was considered to be responsible for increasing drag acting on the model.


2015 ◽  
Vol 137 (11) ◽  
Author(s):  
Theodoros Michelis ◽  
Marios Kotsonis

A wind tunnel study is conducted toward hybrid flow control of a full scale transport truck side mirror at ReD=3.2×105. A slim guide vane is employed for redirecting high-momentum flow toward the mirror wake region. Leading edge separation from the guide vane is reduced or eliminated by means of an alternating current -dielectric barrier discharge (AC-DBD) plasma actuator. Particle image velocimetry (PIV) measurements are performed at a range of velocities from 15 to 25 m/s and from windward to leeward angles from -5deg to 5deg. Time-averaged velocity fields are obtained at the center of the mirror for three scenarios: (a) reference case lacking any control elements, (b) guide vane only, and (c) combination of the guide vane and the AC-DBD plasma actuator. The comparison of cases demonstrates that at 25 m/s windward conditions (-5deg) the guide vane is capable of recovering 17% momentum with respect to the reference case. No significant change is observed by activating the AC-DBD plasma actuator. In contrast, at leeward conditions (5deg), the guide vane results in a −20% momentum loss that is rectified to a 6% recovery with actuation. The above implies that for a truck with two mirrors, 23% of momentum may be recovered.


Author(s):  
Jianyang Yu ◽  
Wenchun Bao ◽  
Fu Chen ◽  
Yanping Song ◽  
Cong Wang

Abstract The dielectric barrier discharge (DBD) plasma actuator, in which electrodes are asymmetric arranged, has already demonstrated its ability in flow control. In the present work, the configuration of multiple plasma actuators is placed at the suction side of the cascade top to realize the tip leakage control. However, massive configurations appear when the number of plasma actuators increases, resulting in the investigation of actuator configuration for tip leakage flow control becomes a challenge. The surrogate modelling approach provides a cheap and efficient method to investigate the effect of multiple plasma actuators on the tip leakage flow control. By constructing an approximation model, tip leakage mass flow rates of all configuration are obtained in the present work. What’s more, the flow structures in the tip clearance controlled by the plasma actuators are explained in the process of topological analysis. The results show that the tip leakage mass flow rate is decreasing with the number of active plasma actuators increasing. However, the decreasing would reach its limits in the process of adding plasma actuators. In the analysis of flow topology, single actuator would generate a small vortex at the suction side to cause an obstacle in the tip leakage flow. While the continuous arrangements of plasma actuator is beneficial to generate an induced vortex to diminish the tip leakage flow.


Sign in / Sign up

Export Citation Format

Share Document